Synthetic NKG2D receptor (SNR) armored CAR-T cells overcome antigen heterogeneity of solid tumor.

IF 4.9 2区 医学 Q2 CELL BIOLOGY
Minmin Sun, Linke Bian, Hongye Wang, Xin Liu, Yantao Li, Zhaorong Wu, Shuangshuang Zhang, Ruidong Hao, Hong Xin, Bo Zhai, Xuemei Zhang, Yuanguo Cheng
{"title":"Synthetic NKG2D receptor (SNR) armored CAR-T cells overcome antigen heterogeneity of solid tumor.","authors":"Minmin Sun, Linke Bian, Hongye Wang, Xin Liu, Yantao Li, Zhaorong Wu, Shuangshuang Zhang, Ruidong Hao, Hong Xin, Bo Zhai, Xuemei Zhang, Yuanguo Cheng","doi":"10.1007/s13402-025-01066-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CAR-T cell therapy has demonstrated remarkable success in hematologic malignancies; however, its effectiveness against solid tumors remains limited due to tumor antigen heterogeneity. NKG2DLs, including MICA/B and the ULBP family, are stress-induced molecules frequently upregulated on the surface of tumor cells and components of the tumor microenvironment, providing attractive targets for immunotherapy. To broaden the targeting capability beyond conventional Claudin18.2-directed CAR-T cells, we engineered a Synthetic NKG2D Receptor (SNR). The SNR comprises the extracellular domain of NKG2D fused with the intracellular signaling domains of DAP10 and DAP12, enabling effective targeting of NKG2D ligands (NKG2DLs).</p><p><strong>Methods: </strong>Expression of NKG2DLs and CLDN18.2 were detected by immunohistochemistry on a gastric cancer tissue microarray. We designed SNR CAR-T cells by linking CLDN18.2 CAR with SNR by a 2A self-cleaving peptide. We assessed their cytotoxicity, tumor infiltration, persistence, and antitumor efficacy using in vitro assays, patient-derived xenograft (PDX) models, and murine syngeneic models. Additionally, transcriptomic analysis and flow cytometry were performed to evaluate exhaustion and memory markers.</p><p><strong>Results: </strong>SNR CAR-T cells demonstrated enhanced cytotoxicity against tumor cells with heterogeneous CLDN18.2 expression, effectively lysing both CLDN18.2-positive and NKG2DL-positive tumor cells in vitro. In PDX and murine models, SNR CAR-T cells exhibited superior antitumor efficacy, leading to significant tumor regression and CAR-T expansion compared to conventional CAR-T cells. Furthermore, SNR CAR-T cells displayed reduced expression of exhaustion markers and increased expression of memory-associated markers. Enhanced tumor infiltration, proliferation and cytotoxicity within the tumor microenvironment, and a reduced presence of myeloid-derived suppressor cells (MDSCs) and tumor neovasculature were observed. Importantly, SNR CAR-T cell therapy was well-tolerated, with no significant toxicity noted in all the treated animals.</p><p><strong>Conclusion: </strong>The SNR CAR-T cell approach addresses tumor antigen heterogeneity and suppressive tumor microenvironment, offering a promising therapeutic strategy for solid tumors and paving the way for its future clinical applications.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01066-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: CAR-T cell therapy has demonstrated remarkable success in hematologic malignancies; however, its effectiveness against solid tumors remains limited due to tumor antigen heterogeneity. NKG2DLs, including MICA/B and the ULBP family, are stress-induced molecules frequently upregulated on the surface of tumor cells and components of the tumor microenvironment, providing attractive targets for immunotherapy. To broaden the targeting capability beyond conventional Claudin18.2-directed CAR-T cells, we engineered a Synthetic NKG2D Receptor (SNR). The SNR comprises the extracellular domain of NKG2D fused with the intracellular signaling domains of DAP10 and DAP12, enabling effective targeting of NKG2D ligands (NKG2DLs).

Methods: Expression of NKG2DLs and CLDN18.2 were detected by immunohistochemistry on a gastric cancer tissue microarray. We designed SNR CAR-T cells by linking CLDN18.2 CAR with SNR by a 2A self-cleaving peptide. We assessed their cytotoxicity, tumor infiltration, persistence, and antitumor efficacy using in vitro assays, patient-derived xenograft (PDX) models, and murine syngeneic models. Additionally, transcriptomic analysis and flow cytometry were performed to evaluate exhaustion and memory markers.

Results: SNR CAR-T cells demonstrated enhanced cytotoxicity against tumor cells with heterogeneous CLDN18.2 expression, effectively lysing both CLDN18.2-positive and NKG2DL-positive tumor cells in vitro. In PDX and murine models, SNR CAR-T cells exhibited superior antitumor efficacy, leading to significant tumor regression and CAR-T expansion compared to conventional CAR-T cells. Furthermore, SNR CAR-T cells displayed reduced expression of exhaustion markers and increased expression of memory-associated markers. Enhanced tumor infiltration, proliferation and cytotoxicity within the tumor microenvironment, and a reduced presence of myeloid-derived suppressor cells (MDSCs) and tumor neovasculature were observed. Importantly, SNR CAR-T cell therapy was well-tolerated, with no significant toxicity noted in all the treated animals.

Conclusion: The SNR CAR-T cell approach addresses tumor antigen heterogeneity and suppressive tumor microenvironment, offering a promising therapeutic strategy for solid tumors and paving the way for its future clinical applications.

合成NKG2D受体(SNR)装甲CAR-T细胞克服实体瘤抗原异质性。
背景:CAR-T细胞疗法在血液恶性肿瘤治疗中取得了显著的成功;然而,由于肿瘤抗原的异质性,其对实体瘤的疗效仍然有限。nkg2dl,包括MICA/B和ULBP家族,是肿瘤细胞和肿瘤微环境成分表面经常上调的应激诱导分子,为免疫治疗提供了有吸引力的靶点。为了扩大靶向能力,超越传统的claudin18.2靶向CAR-T细胞,我们设计了一种合成NKG2D受体(SNR)。SNR包括NKG2D的胞外结构域与DAP10和DAP12的胞内信号域融合,能够有效靶向NKG2D配体(nkg2dl)。方法:采用免疫组化方法在胃癌组织芯片上检测nkg2dl和CLDN18.2的表达。我们通过2A自切割肽将CLDN18.2 CAR与SNR连接,设计了SNR CAR- t细胞。我们通过体外实验、患者来源的异种移植(PDX)模型和小鼠同基因模型评估了它们的细胞毒性、肿瘤浸润、持久性和抗肿瘤功效。此外,通过转录组学分析和流式细胞术评估衰竭和记忆标志物。结果:SNR CAR-T细胞对异种CLDN18.2表达的肿瘤细胞具有增强的细胞毒性,在体外有效裂解CLDN18.2阳性和nkg2dl阳性肿瘤细胞。在PDX和小鼠模型中,SNR CAR-T细胞表现出优越的抗肿瘤功效,与常规CAR-T细胞相比,可导致肿瘤消退和CAR-T扩增。此外,SNR CAR-T细胞表现出衰竭标志物的表达减少和记忆相关标志物的表达增加。观察到肿瘤微环境中肿瘤浸润、增殖和细胞毒性增强,骨髓源性抑制细胞(MDSCs)和肿瘤新生血管的存在减少。重要的是,SNR CAR-T细胞疗法耐受性良好,在所有接受治疗的动物中没有发现明显的毒性。结论:SNR CAR-T细胞方法解决了肿瘤抗原异质性和抑制肿瘤微环境的问题,为实体瘤的治疗提供了一种有前景的治疗策略,为其未来的临床应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信