Predicting the early therapeutic response to hepatic artery infusion chemotherapy in patients with unresectable HCC using a contrast-enhanced computed tomography-based habitat radiomics model: a multi-center retrospective study.
Mingsong Wu, Zenglong Que, Shujie Lai, Guanhui Li, Jie Long, Yuqin He, Shunan Wang, Hao Wu, Nan You, Xiang Lan, Liangzhi Wen
{"title":"Predicting the early therapeutic response to hepatic artery infusion chemotherapy in patients with unresectable HCC using a contrast-enhanced computed tomography-based habitat radiomics model: a multi-center retrospective study.","authors":"Mingsong Wu, Zenglong Que, Shujie Lai, Guanhui Li, Jie Long, Yuqin He, Shunan Wang, Hao Wu, Nan You, Xiang Lan, Liangzhi Wen","doi":"10.1007/s13402-025-01041-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Predicting the therapeutic response before initiation of hepatic artery infusion chemotherapy (HAIC) with fluorouracil, leucovorin, and oxaliplatin (FOLFOX) remains challenging for patients with unresectable hepatocellular carcinoma (HCC). Herein, we investigated the potential of a contrast-enhanced CT-based habitat radiomics model as a novel approach for predicting the early therapeutic response to HAIC-FOLFOX in patients with unresectable HCC.</p><p><strong>Methods: </strong>A total of 148 patients with unresectable HCC who received HAIC-FOLFOX combined with targeted therapy or immunotherapy at three tertiary care medical centers were enrolled retrospectively. Tumor habitat features were extracted from subregion radiomics based on CECT at different phases using k-means clustering. Logistic regression was used to construct the model. This CECT-based habitat radiomics model was verified by bootstrapping and compared with a model based on clinical variables. Model performance was evaluated using the area under the curve (AUC) and a calibration curve.</p><p><strong>Results: </strong>Three intratumoral habitats with high, moderate, and low enhancement were identified to construct a habitat radiomics model for therapeutic response prediction. Patients with a greater proportion of high-enhancement intratumoral habitat showed better therapeutic responses. The AUC of the habitat radiomics model was 0.857 (95% CI: 0.798-0.916), and the bootstrap-corrected concordance index was 0.842 (95% CI: 0.785-0.907), resulting in a better predictive value than the clinical variable-based model, which had an AUC of 0.757 (95% CI: 0.679-0.834).</p><p><strong>Conclusion: </strong>The CECT-based habitat radiomics model is an effective, visualized, and noninvasive tool for predicting the early therapeutic response of patients with unresectable HCC to HAIC-FOLFOX treatment and could guide clinical management and decision-making.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01041-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Predicting the therapeutic response before initiation of hepatic artery infusion chemotherapy (HAIC) with fluorouracil, leucovorin, and oxaliplatin (FOLFOX) remains challenging for patients with unresectable hepatocellular carcinoma (HCC). Herein, we investigated the potential of a contrast-enhanced CT-based habitat radiomics model as a novel approach for predicting the early therapeutic response to HAIC-FOLFOX in patients with unresectable HCC.
Methods: A total of 148 patients with unresectable HCC who received HAIC-FOLFOX combined with targeted therapy or immunotherapy at three tertiary care medical centers were enrolled retrospectively. Tumor habitat features were extracted from subregion radiomics based on CECT at different phases using k-means clustering. Logistic regression was used to construct the model. This CECT-based habitat radiomics model was verified by bootstrapping and compared with a model based on clinical variables. Model performance was evaluated using the area under the curve (AUC) and a calibration curve.
Results: Three intratumoral habitats with high, moderate, and low enhancement were identified to construct a habitat radiomics model for therapeutic response prediction. Patients with a greater proportion of high-enhancement intratumoral habitat showed better therapeutic responses. The AUC of the habitat radiomics model was 0.857 (95% CI: 0.798-0.916), and the bootstrap-corrected concordance index was 0.842 (95% CI: 0.785-0.907), resulting in a better predictive value than the clinical variable-based model, which had an AUC of 0.757 (95% CI: 0.679-0.834).
Conclusion: The CECT-based habitat radiomics model is an effective, visualized, and noninvasive tool for predicting the early therapeutic response of patients with unresectable HCC to HAIC-FOLFOX treatment and could guide clinical management and decision-making.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.