Tolulope Elizabeth Aniyikaiye, Stuart J Piketh, Joshua Nosa Edokpayi
{"title":"A spatial approach to assessing PM<sub>2.5</sub> exposure level of a brickmaking community in South Africa.","authors":"Tolulope Elizabeth Aniyikaiye, Stuart J Piketh, Joshua Nosa Edokpayi","doi":"10.1080/10962247.2024.2332227","DOIUrl":"10.1080/10962247.2024.2332227","url":null,"abstract":"<p><p>Globally, particulate matter with an aerodynamic diameter of 2.5 µm or less poses a significant threat to human health. The first step in quantifying human health impacts caused by exposure to PM<sub>2.5</sub> pollution is exposure assessment. Population-weighted exposure level (PWEL) estimation is one of the methods that provides a more precise exposure assessment since it incorporates the spatiotemporal distribution of population with the pollution concentration estimate. In this study, PM<sub>2.5</sub> exposure levels in the local communities around brickmaking industries were investigated, using the population census data of the study area and 1-year data from nine PM<sub>2.5</sub> monitoring stations installed in and around the brickmaking industries. The observed PM<sub>2.5</sub> data was spatially interpolated using inverse distance weight (IDW). Data on PM<sub>2.5</sub> levels across the study area were classified based on the World Health Organization interim target (IT) guidelines and the South African National ambient air quality standard (NAAQS). An annual PM<sub>2.5</sub> population weighted exposure level of 27.6 µg/m<sup>3</sup> was estimated for the study area. However, seasonal exposure levels of 28.9, 37.6, 26.5, and 20.7 µg/m<sup>3</sup> were estimated for the autumn, winter, spring, and summer seasons, respectively. This implies that local communities around the brick kiln in the Vhembe District are exposed to high levels of PM<sub>2.5</sub>, especially in winter. The PM<sub>2.5</sub> levels in the brickmaking industries as well as its other sources in the Vhembe District, therefore, need to be lowered. Findings from population exposure level to pollutants can provide valuable data for formulating policies and recommendations on exposure reduction and public health protection.<i>Implications</i>: PM<sub>2.5</sub> concentration in any given environment has high spatial and temporal variability due to the presence of diffused sources in the environment. Using ambient air concentrations to directly estimate population exposure without taking into consideration the disproportionate spatial and temporal distribution of the pollutant and the population may not yield accurate results on human exposure levels. It is, therefore, important to assess the aggregated PM<sub>2.5</sub> exposure of a populace within a given area. This study therefore examines the PM<sub>2.5</sub> population-weighted-exposure level of the host communities of the brickmaking industry in Vhembe District, South Africa.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"345-358"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paule Lapeyre, Rodrigo Brenner Miguel, Michael Christopher Nagorski, Jean-Philippe Gagnon, Martin Chamberland, Caroline Turcotte, Kyle J Daun
{"title":"Quantifying flare combustion efficiency using an imaging Fourier transform spectrometer.","authors":"Paule Lapeyre, Rodrigo Brenner Miguel, Michael Christopher Nagorski, Jean-Philippe Gagnon, Martin Chamberland, Caroline Turcotte, Kyle J Daun","doi":"10.1080/10962247.2024.2319773","DOIUrl":"10.1080/10962247.2024.2319773","url":null,"abstract":"<p><p>Mid-wavelength infrared (MWIR) imaging Fourier transform spectrometers (IFTSs) are a promising technology for measuring flare combustion efficiency (CE) and destruction removal efficiency (DRE). These devices generate spectrally resolved intensity images of the flare plume, which may then be used to infer column densities of relevant species along each pixel line-of-sight. In parallel, a 2D projected velocity field may be inferred from the apparent motion of flow features between successive images. Finally, the column densities and velocity field are combined to estimate the mass flow rates for the species needed to calculate the CE or DRE. Since the MWIR IFTS can measure key carbon-containing species in the flare plume, it is possible to measure CE without knowing the fuel flow rate, which is important for fenceline measurements. This work demonstrates this approach on a laboratory heated vent, and then deploys the technique on two working flares: a combustor burning natural gas at a known rate, and a steam-assisted flare at a petrochemical refinery. Analysis of the IFTS data highlights the potential of this approach, but also areas for future development to transform this approach into a reliable technique for quantifying flare emissions.<i>Implications</i>: Our research is motivated by the need to assess hydrocarbon emissions from flaring, which is a critical problem of global significance. For example, recent studies have shown that methane destruction efficiency of flaring from upstream oil may be significantly lower than the commonly assumed figure of 98%; work by Plant et al. , in particular, suggest that this discrepancy amounts to CO<sub>2</sub> emissions from 2 to 8 million automobiles annually, considering the US alone. Similarly, the international energy agency (IEA) estimates a global flare efficiency of 92%, which translates in 8 million tons of CH<sub>4</sub> emitted by flares in 2020. Highlighted by these studies and supported by the World Bank initiatives toward zero routine flaring emissions, there is an urgent need for oil and gas industry to assess their flare methane emission, and overall hydrocarbon emissions. At the very least, it is critical to identify problematic flare operating conditions and means to mitigate flare emissions. Focusing on remote quantification of plume species, the measurement technique and quantification method presented in this paper is a considerable step forward in that direction by computing combustion efficiency and key components for destruction efficiency.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"319-334"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term trends in British Columbia lower mainland air quality: Criteria air pollutants and VOC.","authors":"Kevin Percy, Tom Dann","doi":"10.1080/10962247.2024.2319770","DOIUrl":"10.1080/10962247.2024.2319770","url":null,"abstract":"<p><p>The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM<sub>2.5</sub>), ozone (O<sub>3</sub>), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98<sup>th</sup> percentile of the daily 24-hr average PM<sub>2.5</sub> concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM<sub>2.5</sub> concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM<sub>2.5</sub> concentrations related to forest fires were a significant influence on PM<sub>2.5</sub> ambient concentrations. Annual 4<sup>th</sup> highest daily maximum 8-hr average O<sub>3</sub> concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO<sub>2</sub> and SO<sub>2</sub> concentrations, and in time-integrated annual VOC concentrations.<i>Implications</i>: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub> and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM<sub>2.5</sub>.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"261-278"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Management of water-based paint sludge originating from the automotive industry via composting.","authors":"Selnur Uçaroğlu, Behice Gamze Gümrah","doi":"10.1080/10962247.2024.2316821","DOIUrl":"10.1080/10962247.2024.2316821","url":null,"abstract":"<p><p>Water-based paint sludge generated from the automotive industry is considered a hazardous waste due to its high carbon content and is challenging and costly to manage. This study investigates the management of water-based paint sludge through the composting process, considering its high carbon content. The water-based paint sludge was composted in five separate reactors with the addition of treatment sludge from the same industry as co-substrate and inoculum, as well as sunflower stalks as a bulking agent. The ratio of paint sludge added to the compost mixtures varied between 40% and 80%. The highest temperature was achieved in reactors where industrial sludge was added, and the bulking agent was used at a rate of 20% (R3 and R5). The most efficient composting process was conducted with the addition of 60% water-based paint sludge, 20% treatment sludge, and 20% sunflower stalks (w/w, wet weight basis) (R3). During this process, reductions in organic matter content were observed due to organic matter mineralization, resulting in a decrease in moisture during the maturation phase and consequently reducing waste volumes. The composting process can be a useful tool in addressing the challenges of paint sludge management. Utilizing the composting process not only reduces waste volumes, thereby minimizing environmental impacts, but also offers a sustainable approach to paint sludge management by lowering disposal costs. It is also possible to achieve more effective results by composting paint sludge with different recipes and the use of various bulking agents.<i>Implications:</i> Composting is a method that can be used to achieve stabilization, reduce the quantity, and enable biodrying of water-based paint sludge generated from the automotive industry. In this study, different ratios of paint sludge were mixed with treatment sludge from the same industry as co-substrate and inoculum, while sunflower stalks were added as a bulking agent, and a composting process was conducted. The addition of industrial wastewater treatment sludge and sunflower stalks has increased the efficiency of the paint sludge composting process. In the management of paint sludge, the composting process has emerged as a significant alternative that reduces disposal costs and environmental impacts.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"279-289"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geo-spatial technology based on a multi-criteria evaluation technique used to find potential landfill sites in the town of Bule Hora in southern Ethiopia.","authors":"Ajitesh Singh Chandel","doi":"10.1080/10962247.2024.2312889","DOIUrl":"10.1080/10962247.2024.2312889","url":null,"abstract":"<p><p>Solid waste has surfaced as an eminent and critical concern of environmental and social significance on a global scale, and Ethiopia, a developing country with limited income, has also encountered unfavorable outcomes due to substandard waste management practices. When pinpointing a fitting landfill location in the town of Bule Hora, various ecological, economic, and societal aspects must be considered; these may result in discord and exacerbate a multifaceted and lengthy process. Hence, this research aims to identify prospective landfill sites within the town and utilize geospatial methods, such as Multi-Criteria Evaluation and Analytic Hierarchy Process, to accomplish its objectives. The utilization of geospatial technology and multi-criteria evaluation provides an efficient manner to simultaneously address all bottlenecks involved in the selection of an appropriate landfill location. Geospatial technology evaluates and manages environmental constraints, whereas multi-criteria assessment categorizes choices based on their desirability. Furthermore, by employing a restriction map adhering to established standards, seven landfill sites have successfully been identified within the town. The Land Suitability Index assesses site suitability based on ecological factors, while the Total Hauling Distance evaluates sites within an economic framework. AHP determines weightings through 25.4 pairwise comparisons, resulting in a consistency ratio of 1.95%. The cartographic analysis is conducted using ESRI ArcGIS version 10.8 software. The findings of this study reveal that 98.69% of the area under study is subject to restrictions. The study recommends the implementation of geospatial methods for identifying suitable landfill sites, which would aid in the decision-making process and prevent hasty decisions from triggering environmental degradation. Proper waste disposal would augment the quality of life for residents by diminishing health hazards. The study endeavors to serve as a reference for other developing countries in selecting appropriate landfill sites.<i>Implications</i>: The town of Bule Hora also faces the problem of waste disposal; there is no scientifically selected suitable landfill. Residents of the town of Bule Hora practice waste disposal in open fields, near settlements, water bodies, roads, agricultural land, and other places. The main sources of solid waste in the town are homes, shops, hotels, restaurants, open markets, hospitals, educational institutions, private clinics, etc. Water pollution can potentially lead to the spread of waterborne diseases. According to reports from the Bule Horas Health Department, many people are affected by water-related diseases every year. These open landfill systems with no regard for settlement, topography, geology, surface, or groundwater conditions are the consequences of these unsuitable habitats and health problems. To reduce these problems, this study plays an important role in determining th","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"207-239"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodegradable dust suppressants prepared from biomass-based materials: The role of viscosity and suppressed particles.","authors":"Seok-Young Oh, Soo-Won Cha, Hyungwoo Lee","doi":"10.1080/10962247.2024.2316070","DOIUrl":"10.1080/10962247.2024.2316070","url":null,"abstract":"<p><p>In this study, biodegradable dust suppressants were prepared using glycerol and biomass-based oily compounds, including palm oil, biodiesel, and soybean oil. The suppressing ability of the glycerol and the oily compound mixture was evaluated using wind tunnel tests, and factors affecting the suppression of the particles were determined. The replacement of sodium dodecyl sulfate with coco glucoside and lauryl glucoside significantly enhanced the biodegradability of the suppressants (2.02 vs. 9.01 and 8.54 mg/L of BOD<sub>5</sub>). The glycerol and soybean oil mixture exhibited excellent performance owing to the relatively high viscosity of the suppressants, and the optimal dilution ratio was 1:50 and 1:1000 for sand and granite-weathered soil, respectively. More than 98% of suppression was obtained under the optimal conditions. The effect of the particle properties (particularly permeability) was significant, even though the viscosity of the suppressants was responsible for the suppression of the particles. Our results suggest that the mixture of glycerol and biomass-based oily compounds could be a promising suppressant for reducing the mobility of ultrafine particles in the atmosphere.<i>Implications:</i> Since the early 2010s, anthropogenic fugitive dust from industrial activities has become a serious environmental issue due to its serious hazards to the environment and human health in South Korea. So far, several dust suppressants (mostly salts) were made and used for field application. However, due to their toxic effects, it is necessary to develop a new eco-friendly suppressant that can be biodegraded in the soil and that is not hazardous to human health or the environment. Previously we have developed an eco-friendly dust suppressant with low toxicity and high suppression ability using ingredients and by-products of biodiesel production, marine biomass, and commercial vegetable oils (Tsgot and Oh 2021, <i>J. Air Waste Manag. Assoc</i>. 71:1386-1396). However, due to the low biodegradability of surfactant, the synthesized dust suppressants showed limited biodegradability. As a follow-up to our previous study, we employed readily biodegradable surfactants as additives to enhance the biodegradability of the dust suppressants with the same excellent suppressing ability. To determine the optimal conditions, the synthesis and preparation of the dust suppressants was conducted using biodegradable surfactants, including coco glucoside and lauryl glucoside. The factors affecting the suppressing ability of the suppressants were examined via wind tunnel tests. These factors include the dilution factors, the viscosity of the suppressants, and the type of suppressed particles. Possible suppressing mechanisms were also discussed.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"253-260"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhimin Ye, Zhonghua Xiao, Qing Gong, Yuxuan Peng, Jiaxiang Li, Xueyuan Zhao, Biao Zhang, Songlin Wang
{"title":"Preparation of landscape gardening soil using undersized fraction from aged MSW by EDTA or citric acid coupled with humic acid: Effect assessment, properties, and optimization.","authors":"Zhimin Ye, Zhonghua Xiao, Qing Gong, Yuxuan Peng, Jiaxiang Li, Xueyuan Zhao, Biao Zhang, Songlin Wang","doi":"10.1080/10962247.2023.2290727","DOIUrl":"10.1080/10962247.2023.2290727","url":null,"abstract":"<p><p>Undersized fraction from aged municipal solid waste (UFAMSW), as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants. The characteristics and effectiveness of heavy metal pollution removal in UFAMSW attracted tremendous research interest from scientists recently. In this study, the heavy metal removal efficiencies and bioavailability of washing on contaminated UFAMSW were evaluated with three washing reagents including ethylene diamine tetra acetic acid (EDTA), citric acid (CA), and humic acid (HA). The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and response surface methodology (RSM) was employed to optimize the washing conditions. The results indicated that the removal efficiencies of Cu, Zn, and Mn could be 53.68%, 52.12%, and 30.63% by EDTA/HA washing and 42.36%, 39.67% and 28.49% by CA/HA washing, respectively. The European Community Bureau of Reference (BCR) sequential extraction was applied to analyze the fraction change of heavy metals in UFAMSW before and after washing, and it was found that chelating agent combined with HA could contribute to the removal of the exchangeable fraction. Physical and chemical properties of UFAMSW were improved to some extent after washing with mixed HA and chelating agent and could achieve the quality standard of landscape gardening soil. Accordingly, the mixture of HA and other chelating agents could be a promising washing process for preparation of landscape gardening soil using UFAMSW.<i>Implications</i>: Our manuscript studies the removal of heavy metals from the contaminated undersized fraction from aged municipal solid waste (UFAMSW). UFAMSW, as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants however often limited by heavy metal pollution. The UFAMSW used in this experiment was collected after the excavation and screening-sorting of aged refuse from Changshankou Domestic Waste Sanitary Landfill in Wuhan City, Hubei Province, Southern China. This study investigated the effects of EDTA, CA, HA, mixed EDTA/HA, and mixed CA/HA washing on heavy metal removal (Cu, Zn, and Mn), bioavailability of residual heavy metal and properties. The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and then response surface methodology was employed to optimize the washing conditions. The results showed that washing by CA/HA and EDTA/HA, had a higher removal efficiency of heavy metals (Cu, Zn, and Mn) in UFAMSW compared to single HA. Meanwhile, HA has a higher removal for exchangeable fraction of heavy metals, the exchangeable concentration of Cu, Zn, and Mn in CA/HA and EDTA/HA washed UFAMSW were lower compared with UFAMSW washed by single CA and EDTA. Thus, mixing HA with EDTA or CA makes a less risk to environmental and the removal efficiency i","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"192-205"},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huixin Zong, Peter Brimblecombe, Nirmal Kumar Gali, Zhi Ning
{"title":"Assessing the spatial distribution of odor at an urban waterfront using AERMOD coupled with sensor measurements.","authors":"Huixin Zong, Peter Brimblecombe, Nirmal Kumar Gali, Zhi Ning","doi":"10.1080/10962247.2023.2290710","DOIUrl":"10.1080/10962247.2023.2290710","url":null,"abstract":"<p><p>Impressions of a place are partly formed by smell. The urban waterfronts often leave a rather poor impression due to odor pollution, resulting in recurring complaints. The nature of such complaints can be subjective and vague, so there is a growing interest in quantitative measurements of emissions to explore the causes of malodorous influence. In the present work, an air quality monitor with an H<sub>2</sub>S sensor was employed to continuously measure emissions of malodors at 1-min resolution. H<sub>2</sub>S is often considered to be the predominant odorous substance from sludge and water bodies as it is readily perceptible. The integrated means of concentration from in situ measurements were combined with the AERMOD dispersion model to reveal the spatial distribution of odor concentrations and estimate the extent of odor-prone areas at a daily time step. Year-long observations showed that the diurnal profile exhibits a positively skewed distribution. Meteorology plays a vital role in odor dispersion; the degree of dispersion was explored on a case-by-case basis. There is a greater likelihood of capturing the concentration peaks at night (21:00 to 6:00) as the air is more stable then with less tendency for vertical mixing but favors a horizontal spread. This study indicates that malodors are changeable in time and space and establishes a new approach to using H<sub>2</sub>S sensor data and resolves a long-standing question about odor in Hong Kong.<i>Implications:</i> this study establishes a new approach combining dispersion model with novel H<sub>2</sub>S sensor data to understand the characteristics and pattern of odor emanated from the urban waterfront in Hong Kong. The sensor has dynamic concentration range to detect the episodic level of H<sub>2</sub>S and low level at background conditions. It provides more complete information in relation to odor annoyance, as well as quantitative information useful for odor regulation.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"181-191"},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138463923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of wildfire smoke on ozone concentrations using a Generalized Additive model in Salt Lake City, Utah, USA, 2006-2022.","authors":"Haebum Lee, Daniel A Jaffe","doi":"10.1080/10962247.2023.2291197","DOIUrl":"10.1080/10962247.2023.2291197","url":null,"abstract":"<p><p>We investigated the impact of wildfires on maximum daily 8-hr average ozone concentrations (MDA8 O<sub>3</sub>) at four sites in Salt Lake City (SLC), Utah for May to September for 2006-2022. Smoke days, which were identified by a combination of overhead satellite smoke detection and surface PM<sub>2.5</sub> data and accounted for approximately 9% of the total number of days, exhibited O<sub>3</sub> levels 6.8 to 8.9 ppb higher than no-smoke days and were predominantly characterized by high daily maximum temperatures and low relative humidity. A Generalized Additive Model (GAM) was developed to quantify the impact of wildfire contributions to O<sub>3</sub>. The GAM, which provides smooth functions that make the interpretation of relationships more intuitive, employed 17 predictors and demonstrated reliable performance in various evaluation metrics. The mean of the residuals for all sites was approximately zero for the training and cross-validation data and 5.1 ppb for smoke days. We developed three approaches to estimate the contribution of smoke to O<sub>3</sub> from the model residuals. These generate a minimum and maximum contribution for each smoke day. The average of the minimum and maximum wildfire contributions to O<sub>3</sub> for the SLC sites was 5.1 and 8.5 ppb, respectively. Between 2006 and 2022, an increasing trend in the wildfire contributions to O<sub>3</sub> was observed in SLC. Moreover, trends of the fourth-highest MDA8 O<sub>3</sub> before and after removing the wildfire contributions to O<sub>3</sub> at the SLC Hawthorne site in 2006-2022 were quite different. Whereas the unadjusted data do not meet the current O<sub>3</sub> standard, after removing the contributions from wildfires the SLC region is close to achieving levels that are consistent with meeting the O<sub>3</sub> standard. We also found that the wildfire contribution during smoke days was particularly high under conditions of high temperature, high PM<sub>2.5</sub> concentration, and low cloud fraction.<i>Implications</i>: In this study, we quantified the impact of wildfires on maximum daily 8-hr average ozone concentrations (MDA8 O<sub>3</sub>) in Salt Lake City, Utah, using a Generalized Additive Model (GAM). The GAM results demonstrate the importance of wildfires as contributors to O<sub>3</sub> air pollution. Our results suggest that states could use the GAM approach to assist in quantifying the wildfire contribution to MDA8 O<sub>3</sub> under the U.S. EPA exceptional events rule. These findings also highlight the need for strategies to manage wildfires and their subsequent impacts on air quality in an era of climate warming.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"116-130"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sincere thank you to all our contributors as <i>JA&WMA</i> continues to improve its impact.","authors":"Jeffrey L Collett","doi":"10.1080/10962247.2023.2295699","DOIUrl":"10.1080/10962247.2023.2295699","url":null,"abstract":"","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":"74 2","pages":"71"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}