Charles Driscoll, Jana B Milford, Daven K Henze, Michael D Bell
{"title":"Atmospheric reduced nitrogen: Sources, transformations, effects, and management.","authors":"Charles Driscoll, Jana B Milford, Daven K Henze, Michael D Bell","doi":"10.1080/10962247.2024.2342765","DOIUrl":null,"url":null,"abstract":"<p><p>Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.<i>Implications</i>: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10962247.2024.2342765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.Implications: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.