Journal of Inequalities and Applications最新文献

筛选
英文 中文
Differential equation and inequalities of the generalized k-Bessel functions. 广义k-贝塞尔函数的微分方程和不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-16 DOI: 10.1186/s13660-018-1772-1
Saiful R Mondal, Mohamed S Akel
{"title":"Differential equation and inequalities of the generalized k-Bessel functions.","authors":"Saiful R Mondal,&nbsp;Mohamed S Akel","doi":"10.1186/s13660-018-1772-1","DOIUrl":"https://doi.org/10.1186/s13660-018-1772-1","url":null,"abstract":"<p><p>In this paper, we introduce and study a generalization of the k-Bessel function of order <i>ν</i> given by <dispformula><math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>∞</mi></munderover><mfrac><msup><mrow><mo>(</mo><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mi>r</mi></msup><mrow><msub><mi>Γ</mi><mi>k</mi></msub><mo>(</mo><mi>r</mi><mi>k</mi><mo>+</mo><mi>ν</mi><mo>+</mo><mi>k</mi><mo>)</mo><mi>r</mi><mo>!</mo></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mfrac><mi>ν</mi><mi>k</mi></mfrac></mrow></msup><mo>.</mo></math></dispformula> We also indicate some representation formulae for the function introduced. Further, we show that the function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> is a solution of a second-order differential equation. We investigate monotonicity and log-convexity properties of the generalized k-Bessel function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> , particularly, in the case <math><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> . We establish several inequalities, including a Turán-type inequality. We propose an open problem regarding the pattern of the zeroes of <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1772-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Approximating distance between sets by multivalued coupling with application to uniformly convex Banach spaces. 集间距离的多值耦合逼近及其在一致凸Banach空间中的应用。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-11 DOI: 10.1186/s13660-018-1720-0
Binayak S Choudhury, Pranati Maity, Nikhilesh Metiya, Mihai Postolache
{"title":"Approximating distance between sets by multivalued coupling with application to uniformly convex Banach spaces.","authors":"Binayak S Choudhury,&nbsp;Pranati Maity,&nbsp;Nikhilesh Metiya,&nbsp;Mihai Postolache","doi":"10.1186/s13660-018-1720-0","DOIUrl":"https://doi.org/10.1186/s13660-018-1720-0","url":null,"abstract":"<p><p>In this paper, our aim is to ascertain the distance between two sets iteratively in two simultaneous ways with the help of a multivalued coupling define for this purpose. We define the best proximity points of such couplings that realize the distance between two sets. Our main theorem is deduced in metric spaces. As an application, we obtain the corresponding results in uniformly convex Banach spaces using the geometry of the space. We discuss two examples.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1720-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36422927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Smoothing approximation to the lower order exact penalty function for inequality constrained optimization. 不等式约束优化的低阶精确惩罚函数的平滑逼近。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-11 DOI: 10.1186/s13660-018-1723-x
Shujun Lian, Nana Niu
{"title":"Smoothing approximation to the lower order exact penalty function for inequality constrained optimization.","authors":"Shujun Lian,&nbsp;Nana Niu","doi":"10.1186/s13660-018-1723-x","DOIUrl":"https://doi.org/10.1186/s13660-018-1723-x","url":null,"abstract":"<p><p>For inequality constrained optimization problem, we first propose a new smoothing method to the lower order exact penalty function, and then show that an approximate global solution of the original problem can be obtained by solving a global solution of a smooth lower order exact penalty problem. We propose an algorithm based on the smoothed lower order exact penalty function. The global convergence of the algorithm is proved under some mild conditions. Some numerical experiments show the efficiency of the proposed method.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1723-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36422929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On a class of N-dimensional anisotropic Sobolev inequalities. 一类n维各向异性Sobolev不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-05 DOI: 10.1186/s13660-018-1754-3
Lirong Huang, Eugenio Rocha
{"title":"On a class of N-dimensional anisotropic Sobolev inequalities.","authors":"Lirong Huang,&nbsp;Eugenio Rocha","doi":"10.1186/s13660-018-1754-3","DOIUrl":"https://doi.org/10.1186/s13660-018-1754-3","url":null,"abstract":"<p><p>In this paper, we study the smallest constant <i>α</i> in the anisotropic Sobolev inequality of the form <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mi>p</mi><mi>p</mi></msubsup><mo>≤</mo><mi>α</mi><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi>N</mi><mo>)</mo><mi>p</mi></mrow><mn>2</mn></mfrac></msubsup><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>N</mi><mo>(</mo><mi>p</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mn>2</mn></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>p</mi><mo>-</mo><mn>2</mn></mrow><mn>2</mn></mfrac></msubsup></math></dispformula> and the smallest constant <i>β</i> in the inequality <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><msub><mi>p</mi><mo>∗</mo></msub><msub><mi>p</mi><mo>∗</mo></msub></msubsup><mo>≤</mo><mi>β</mi><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mn>2</mn><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><mo>,</mo></math></dispformula> where <math><mi>V</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>y</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mi>R</mi><mi>N</mi></msup></math> with <math><mi>N</mi><mo>≥</mo><mn>3</mn></math> and <math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mi>p</mi><mo>∗</mo></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1754-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36422939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spectral properties of an impulsive Sturm-Liouville operator. 脉冲Sturm-Liouville算子的谱性质。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-27 DOI: 10.1186/s13660-018-1781-0
Elgiz Bairamov, Ibrahim Erdal, Seyhmus Yardimci
{"title":"Spectral properties of an impulsive Sturm-Liouville operator.","authors":"Elgiz Bairamov,&nbsp;Ibrahim Erdal,&nbsp;Seyhmus Yardimci","doi":"10.1186/s13660-018-1781-0","DOIUrl":"https://doi.org/10.1186/s13660-018-1781-0","url":null,"abstract":"<p><p>This work is devoted to discuss some spectral properties and the scattering function of the impulsive operator generated by the Sturm-Liouville equation. We present a different method to investigate the spectral singularities and eigenvalues of the mentioned operator. We also obtain the finiteness of eigenvalues and spectral singularities with finite multiplicities under some certain conditions. Finally, we illustrate our results by a detailed example.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1781-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Sobolev type inequalities for compact metric graphs. 紧度量图的Sobolev型不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-10-05 DOI: 10.1186/s13660-018-1872-y
Muhammad Usman
{"title":"Sobolev type inequalities for compact metric graphs.","authors":"Muhammad Usman","doi":"10.1186/s13660-018-1872-y","DOIUrl":"https://doi.org/10.1186/s13660-018-1872-y","url":null,"abstract":"<p><p>In this paper analogues of Sobolev inequalities for compact and connected metric graphs are derived. As a consequence of these inequalities, a lower bound, commonly known as Cheeger inequality, on the first non-zero eigenvalue of the Laplace operator with standard vertex conditions is recovered.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1872-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36664774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation. 一类加权非线性椭圆方程的梯度估计和liouville型定理。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-10 DOI: 10.1186/s13660-018-1705-z
Bingqing Ma, Yongli Dong
{"title":"Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation.","authors":"Bingqing Ma,&nbsp;Yongli Dong","doi":"10.1186/s13660-018-1705-z","DOIUrl":"https://doi.org/10.1186/s13660-018-1705-z","url":null,"abstract":"<p><p>We consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a smooth metric measure space [Formula: see text]: [Formula: see text] where <i>a</i>, <i>b</i> are two real constants. When the ∞-Bakry-Émery Ricci curvature is bounded from below, we obtain a global gradient estimate which is not dependent on [Formula: see text]. In particular, we find that any bounded positive solution of the above equation must be constant under some suitable assumptions.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1705-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36109942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An extended reverse Hardy-Hilbert's inequality in the whole plane. 在整个平面上的广义逆Hardy-Hilbert不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-11 DOI: 10.1186/s13660-018-1706-y
Qiang Chen, Bicheng Yang
{"title":"An extended reverse Hardy-Hilbert's inequality in the whole plane.","authors":"Qiang Chen,&nbsp;Bicheng Yang","doi":"10.1186/s13660-018-1706-y","DOIUrl":"https://doi.org/10.1186/s13660-018-1706-y","url":null,"abstract":"<p><p>Using weight coefficients, a complex integral formula, and Hermite-Hadamard's inequality, we give an extended reverse Hardy-Hilbert's inequality in the whole plane with multiparameters and a best possible constant factor. Equivalent forms and a few particular cases are considered.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1706-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36114853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient projection method with a new step size for the split feasibility problem. 一种新的步长梯度投影方法用于分割可行性问题。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-18 DOI: 10.1186/s13660-018-1712-0
Pattanapong Tianchai
{"title":"Gradient projection method with a new step size for the split feasibility problem.","authors":"Pattanapong Tianchai","doi":"10.1186/s13660-018-1712-0","DOIUrl":"10.1186/s13660-018-1712-0","url":null,"abstract":"<p><p>In this paper, we introduce an iterative scheme using the gradient projection method with a new step size, which is not depend on the related matrix inverses and the largest eigenvalue (or the spectral radius of the self-adjoint operator) of the related matrix, based on Moudafi's viscosity approximation method for solving the <i>split feasibility problem</i> (SFP), which is to find a point in a given closed convex subset of a real Hilbert space such that its image under a bounded linear operator belongs to a given closed convex subset of another real Hilbert space. We suggest and analyze this iterative scheme under some appropriate conditions imposed on the parameters such that another strong convergence theorems for the SFP are obtained. The results presented in this paper improve and extend the main results of Tian and Zhang (J. Inequal. Appl. 2017:Article ID 13, 2017), and Tang et al. (Acta Math. Sci. 36B(2):602-613, 2016) (in a single-step regularized method) with a new step size, and many others. The examples of the proposed SFP are also shown through numerical results.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1712-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36134898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New bounds for the exponential function with cotangent. 带余切的指数函数的新边界
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-08 DOI: 10.1186/s13660-018-1697-8
Ling Zhu
{"title":"New bounds for the exponential function with cotangent.","authors":"Ling Zhu","doi":"10.1186/s13660-018-1697-8","DOIUrl":"10.1186/s13660-018-1697-8","url":null,"abstract":"<p><p>In this paper, new bounds for the exponential function with cotangent are found by using the recurrence relation between coefficients in the expansion of power series of the function [Formula: see text] and a new criterion for the monotonicity of the quotient of two power series.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36105458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信