Journal of Inequalities and Applications最新文献

筛选
英文 中文
Generalized Jacobi-Weierstrass operators and Jacobi expansions. 广义Jacobi- weierstrass算子和Jacobi展开。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-28 DOI: 10.1186/s13660-018-1747-2
José A Adell, Jorge Bustamante, Juan J Merino, José M Quesada
{"title":"Generalized Jacobi-Weierstrass operators and Jacobi expansions.","authors":"José A Adell,&nbsp;Jorge Bustamante,&nbsp;Juan J Merino,&nbsp;José M Quesada","doi":"10.1186/s13660-018-1747-2","DOIUrl":"https://doi.org/10.1186/s13660-018-1747-2","url":null,"abstract":"<p><p>We present a realization for some <i>K</i>-functionals associated with Jacobi expansions in terms of generalized Jacobi-Weierstrass operators. Fractional powers of the operators as well as results concerning simultaneous approximation and Nikolskii-Stechkin type inequalities are also considered.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"153"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1747-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covering functionals of cones and double cones. 覆盖锥体和双锥体的泛函。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-24 DOI: 10.1186/s13660-018-1785-9
Senlin Wu, Ke Xu
{"title":"Covering functionals of cones and double cones.","authors":"Senlin Wu,&nbsp;Ke Xu","doi":"10.1186/s13660-018-1785-9","DOIUrl":"https://doi.org/10.1186/s13660-018-1785-9","url":null,"abstract":"<p><p>The least positive number <i>γ</i> such that a convex body <i>K</i> can be covered by <i>m</i> translates of <i>γK</i> is called the covering functional of <i>K</i> (with respect to <i>m</i>), and it is denoted by <math><msub><mi>Γ</mi><mi>m</mi></msub><mo>(</mo><mi>K</mi><mo>)</mo></math> . Estimating covering functionals of convex bodies is an important part of Chuanming Zong's quantitative program for attacking Hadwiger's covering conjecture. Estimations of covering functionals of cones and double cones, which are best possible for certain pairs of <i>m</i> and <i>K</i>, are presented.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"186"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1785-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
An improved approach for studying oscillation of second-order neutral delay differential equations. 研究二阶中立型时滞微分方程振荡的一种改进方法。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-27 DOI: 10.1186/s13660-018-1767-y
Said R Grace, Jozef Džurina, Irena Jadlovská, Tongxing Li
{"title":"An improved approach for studying oscillation of second-order neutral delay differential equations.","authors":"Said R Grace,&nbsp;Jozef Džurina,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li","doi":"10.1186/s13660-018-1767-y","DOIUrl":"https://doi.org/10.1186/s13660-018-1767-y","url":null,"abstract":"<p><p>The paper is devoted to the study of oscillation of solutions to a class of second-order half-linear neutral differential equations with delayed arguments. New oscillation criteria are established, and they essentially improve the well-known results reported in the literature, including those for non-neutral differential equations. The adopted approach refines the classical Riccati transformation technique by taking into account such part of the overall impact of the delay that has been neglected in the earlier results. The effectiveness of the obtained criteria is illustrated via examples.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"193"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1767-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications. 拟非扩张映射的修正分裂广义平衡问题及其应用。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-22 DOI: 10.1186/s13660-018-1716-9
Kanyarat Cheawchan, Atid Kangtunyakarn
{"title":"The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications.","authors":"Kanyarat Cheawchan,&nbsp;Atid Kangtunyakarn","doi":"10.1186/s13660-018-1716-9","DOIUrl":"https://doi.org/10.1186/s13660-018-1716-9","url":null,"abstract":"<p><p>In this paper, we introduce a new problem, the modified split generalized equilibrium problem, which extends the generalized equilibrium problem, the split equilibrium problem and the split variational inequality problem. We introduce a new method of an iterative scheme <math><mo>{</mo><msub><mi>x</mi><mi>n</mi></msub><mo>}</mo></math> for finding a common element of the set of solutions of variational inequality problems and the set of common fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions of the modified split generalized equilibrium problem without assuming a demicloseness condition and <math><msub><mi>T</mi><mi>ω</mi></msub><mo>:</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>-</mo><mi>ω</mi><mo>)</mo><mi>I</mi><mo>+</mo><mi>ω</mi><mi>T</mi></math> , where <i>T</i> is a quasi-nonexpansive mapping and <math><mi>ω</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mn>2</mn></mfrac><mo>)</mo></math> ; a difficult proof in the framework of Hilbert space. In addition, we give a numerical example to support our main result.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"122"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1716-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Inequalities for the fractional convolution operator on differential forms. 微分形式上分数阶卷积算子的不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-16 DOI: 10.1186/s13660-018-1768-x
Zhimin Dai, Huacan Li, Qunfang Li
{"title":"Inequalities for the fractional convolution operator on differential forms.","authors":"Zhimin Dai,&nbsp;Huacan Li,&nbsp;Qunfang Li","doi":"10.1186/s13660-018-1768-x","DOIUrl":"https://doi.org/10.1186/s13660-018-1768-x","url":null,"abstract":"<p><p>The purpose of this paper is to derive some Coifman type inequalities for the fractional convolution operator applied to differential forms. The Lipschitz norm and BMO norm estimates for this integral type operator acting on differential forms are also obtained.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"176"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1768-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Binomial difference sequence spaces of fractional order. 分数阶的二项式差分序列空间。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-10-10 DOI: 10.1186/s13660-018-1873-x
Jian Meng, Liquan Mei
{"title":"Binomial difference sequence spaces of fractional order.","authors":"Jian Meng,&nbsp;Liquan Mei","doi":"10.1186/s13660-018-1873-x","DOIUrl":"https://doi.org/10.1186/s13660-018-1873-x","url":null,"abstract":"<p><p>In this paper, we introduce the sequence spaces <math><msubsup><mi>b</mi> <mn>0</mn> <mrow><mi>r</mi> <mo>,</mo> <mi>s</mi></mrow> </msubsup> <mo>(</mo> <msup><mi>∇</mi> <mrow><mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> </msup> <mo>)</mo></math> , <math><msubsup><mi>b</mi> <mi>c</mi> <mrow><mi>r</mi> <mo>,</mo> <mi>s</mi></mrow> </msubsup> <mo>(</mo> <msup><mi>∇</mi> <mrow><mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> </msup> <mo>)</mo></math> , and <math><msubsup><mi>b</mi> <mi>∞</mi> <mrow><mi>r</mi> <mo>,</mo> <mi>s</mi></mrow> </msubsup> <mo>(</mo> <msup><mi>∇</mi> <mrow><mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> </msup> <mo>)</mo></math> . We investigate some functional properties, inclusion relations, and the <i>α</i>-, <i>β</i>-, <i>γ</i>-, and continuous duals of these sets.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"274"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1873-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36609640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Weighted arithmetic-geometric operator mean inequalities. 加权算术-几何算子平均不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-03 DOI: 10.1186/s13660-018-1750-7
Jianming Xue
{"title":"Weighted arithmetic-geometric operator mean inequalities.","authors":"Jianming Xue","doi":"10.1186/s13660-018-1750-7","DOIUrl":"https://doi.org/10.1186/s13660-018-1750-7","url":null,"abstract":"<p><p>In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let <i>A</i> and <i>B</i> be positive operators. If <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>A</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>B</mi><mo>≤</mo><mi>M</mi></math> or <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>B</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>A</mi><mo>≤</mo><mi>M</mi></math> , then for a positive unital linear map Φ, <dispformula><math><mtable><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mn>2</mn></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><m","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"154"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1750-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36344646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inequalities and asymptotic expansions related to the generalized Somos quadratic recurrence constant. 关于广义Somos二次递推常数的不等式和渐近展开式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-27 DOI: 10.1186/s13660-018-1741-8
Xue-Si Ma, Chao-Ping Chen
{"title":"Inequalities and asymptotic expansions related to the generalized Somos quadratic recurrence constant.","authors":"Xue-Si Ma,&nbsp;Chao-Ping Chen","doi":"10.1186/s13660-018-1741-8","DOIUrl":"https://doi.org/10.1186/s13660-018-1741-8","url":null,"abstract":"<p><p>In this paper, we give asymptotic expansions and inequalities related to the generalized Somos quadratic recurrence constant, using its relation with the generalized Euler constant.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"147"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1741-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36311080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Windschitl type approximation formulas for the gamma function. 伽马函数的Windschitl型近似公式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-10-05 DOI: 10.1186/s13660-018-1870-0
Zhen-Hang Yang, Jing-Feng Tian
{"title":"Windschitl type approximation formulas for the gamma function.","authors":"Zhen-Hang Yang, Jing-Feng Tian","doi":"10.1186/s13660-018-1870-0","DOIUrl":"10.1186/s13660-018-1870-0","url":null,"abstract":"<p><p>In this paper, we present four new Windschitl type approximation formulas for the gamma function. By some unique ideas and techniques, we prove that four functions combined with the gamma function and Windschitl type approximation formulas have good properties, such as monotonicity and convexity. These not only yield some new inequalities for the gamma and factorial functions, but also provide a new proof of known inequalities and strengthen known results.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"272"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36664765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-posedness for a class of generalized variational-hemivariational inequalities involving set-valued operators. 一类包含集值算子的广义变分-半变分不等式的适定性。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-24 DOI: 10.1186/s13660-018-1776-x
Caijing Jiang
{"title":"Well-posedness for a class of generalized variational-hemivariational inequalities involving set-valued operators.","authors":"Caijing Jiang","doi":"10.1186/s13660-018-1776-x","DOIUrl":"https://doi.org/10.1186/s13660-018-1776-x","url":null,"abstract":"<p><p>The aim of present work is to study some kinds of well-posedness for a class of generalized variational-hemivariational inequality problems involving set-valued operators. Some systematic approaches are presented to establish some equivalence theorems between several classes of well-posedness for the inequality problems and some corresponding metric characterizations, which generalize many known results. Finally, the well-posedness for a class of generalized mixed equilibrium problems is also considered.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"187"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1776-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信