加权算术-几何算子平均不等式。

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-03 DOI:10.1186/s13660-018-1750-7
Jianming Xue
{"title":"加权算术-几何算子平均不等式。","authors":"Jianming Xue","doi":"10.1186/s13660-018-1750-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let <i>A</i> and <i>B</i> be positive operators. If <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>A</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>B</mi><mo>≤</mo><mi>M</mi></math> or <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>B</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>A</mi><mo>≤</mo><mi>M</mi></math> , then for a positive unital linear map Φ, <dispformula><math><mtable><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mn>2</mn></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></math></dispformula> where <math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> , <math><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>4</mn><mi>h</mi></mrow></mfrac></math> , <math><mi>S</mi><mo>(</mo><msup><mi>h</mi><mo>'</mo></msup><mo>)</mo><mo>=</mo><mfrac><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup><mrow><mi>e</mi><mo>log</mo><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfrac></math> , <math><mi>h</mi><mo>=</mo><mfrac><mi>M</mi><mi>m</mi></mfrac></math> , <math><msup><mi>h</mi><mo>'</mo></msup><mo>=</mo><mfrac><msup><mi>M</mi><mo>'</mo></msup><msup><mi>m</mi><mo>'</mo></msup></mfrac></math> , <math><mi>r</mi><mo>=</mo><mo>min</mo><mo>{</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>-</mo><mi>α</mi><mo>}</mo></math> and <math><mi>p</mi><mo>≥</mo><mn>2</mn></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"154"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1750-7","citationCount":"2","resultStr":"{\"title\":\"Weighted arithmetic-geometric operator mean inequalities.\",\"authors\":\"Jianming Xue\",\"doi\":\"10.1186/s13660-018-1750-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let <i>A</i> and <i>B</i> be positive operators. If <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>A</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>B</mi><mo>≤</mo><mi>M</mi></math> or <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>B</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>A</mi><mo>≤</mo><mi>M</mi></math> , then for a positive unital linear map Φ, <dispformula><math><mtable><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mn>2</mn></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></math></dispformula> where <math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> , <math><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>4</mn><mi>h</mi></mrow></mfrac></math> , <math><mi>S</mi><mo>(</mo><msup><mi>h</mi><mo>'</mo></msup><mo>)</mo><mo>=</mo><mfrac><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup><mrow><mi>e</mi><mo>log</mo><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfrac></math> , <math><mi>h</mi><mo>=</mo><mfrac><mi>M</mi><mi>m</mi></mfrac></math> , <math><msup><mi>h</mi><mo>'</mo></msup><mo>=</mo><mfrac><msup><mi>M</mi><mo>'</mo></msup><msup><mi>m</mi><mo>'</mo></msup></mfrac></math> , <math><mi>r</mi><mo>=</mo><mo>min</mo><mo>{</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>-</mo><mi>α</mi><mo>}</mo></math> and <math><mi>p</mi><mo>≥</mo><mn>2</mn></math> .</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"154\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1750-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1750-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1750-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文改进和推广了由Lin (Stud)引起的一些加权算术-几何算子均值不等式。数学学报,15(5):187-194,2013)。肛门。9:166- 172,2015),设A和B为正运算符。如果0 m≤≤m B的≤≤m或0 m B≤≤m我‘≤≤m,然后积极unital线性映射ΦΦ2(∇αB)≤(K (h) S (h或)]2Φ2(♯αB),Φ2(∇αB)≤(K (h) S (h或)]2[Φ(A)♯αΦ(B)) 2,Φ2 p(∇αB)≤116 (K2 (h) (M2 + M2) 2 s2 (h或)M2m2] pΦ2 p(♯αB),Φ2 p(∇αB)≤116 (K2 (h) (M2 + M2) 2 s2 (h或)M2m2] p(Φ(A)♯αΦ(B)) 2 p,在α∈[0,1],K (h) = (h + 1) 24 h, S (h) = h的1 h 1 elogh的1 h的1 h = Mm, h = m’,r =分钟{α,1 -α}和p≥2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted arithmetic-geometric operator mean inequalities.

In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let A and B be positive operators. If 0<mAm'<M'BM or 0<mBm'<M'AM , then for a positive unital linear map Φ, Φ2(AαB)[K(h)S(h'r)]2Φ2(AαB),Φ2(AαB)[K(h)S(h'r)]2[Φ(A)αΦ(B)]2,Φ2p(AαB)116[K2(h)(M2+m2)2S2(h'r)M2m2]pΦ2p(AαB),Φ2p(AαB)116[K2(h)(M2+m2)2S2(h'r)M2m2]p[Φ(A)αΦ(B)]2p, where α[0,1] , K(h)=(h+1)24h , S(h')=h'1h'-1elogh'1h'-1 , h=Mm , h'=M'm' , r=min{α,1-α} and p2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信