{"title":"加权算术-几何算子平均不等式。","authors":"Jianming Xue","doi":"10.1186/s13660-018-1750-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let <i>A</i> and <i>B</i> be positive operators. If <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>A</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>B</mi><mo>≤</mo><mi>M</mi></math> or <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>B</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>A</mi><mo>≤</mo><mi>M</mi></math> , then for a positive unital linear map Φ, <dispformula><math><mtable><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mn>2</mn></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></math></dispformula> where <math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> , <math><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>4</mn><mi>h</mi></mrow></mfrac></math> , <math><mi>S</mi><mo>(</mo><msup><mi>h</mi><mo>'</mo></msup><mo>)</mo><mo>=</mo><mfrac><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup><mrow><mi>e</mi><mo>log</mo><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfrac></math> , <math><mi>h</mi><mo>=</mo><mfrac><mi>M</mi><mi>m</mi></mfrac></math> , <math><msup><mi>h</mi><mo>'</mo></msup><mo>=</mo><mfrac><msup><mi>M</mi><mo>'</mo></msup><msup><mi>m</mi><mo>'</mo></msup></mfrac></math> , <math><mi>r</mi><mo>=</mo><mo>min</mo><mo>{</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>-</mo><mi>α</mi><mo>}</mo></math> and <math><mi>p</mi><mo>≥</mo><mn>2</mn></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"154"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1750-7","citationCount":"2","resultStr":"{\"title\":\"Weighted arithmetic-geometric operator mean inequalities.\",\"authors\":\"Jianming Xue\",\"doi\":\"10.1186/s13660-018-1750-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let <i>A</i> and <i>B</i> be positive operators. If <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>A</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>B</mi><mo>≤</mo><mi>M</mi></math> or <math><mn>0</mn><mo><</mo><mi>m</mi><mo>≤</mo><mi>B</mi><mo>≤</mo><msup><mi>m</mi><mo>'</mo></msup><mo><</mo><msup><mi>M</mi><mo>'</mo></msup><mo>≤</mo><mi>A</mi><mo>≤</mo><mi>M</mi></math> , then for a positive unital linear map Φ, <dispformula><math><mtable><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mn>2</mn></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>[</mo><mfrac><mrow><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mrow><mi>S</mi><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><mn>2</mn></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mn>2</mn></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>♯</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mi>Φ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><msub><mi>∇</mi><mi>α</mi></msub><mi>B</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mn>16</mn></mfrac><msup><mrow><mo>[</mo><mfrac><mrow><msup><mi>K</mi><mn>2</mn></msup><mo>(</mo><mi>h</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msup><mi>S</mi><mn>2</mn></msup><mo>(</mo><msup><mi>h</mi><mrow><mo>'</mo><mi>r</mi></mrow></msup><mo>)</mo><msup><mi>M</mi><mn>2</mn></msup><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo></mrow><mi>p</mi></msup><msup><mrow><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mi>♯</mi><mi>α</mi></msub><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></math></dispformula> where <math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> , <math><mi>K</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>4</mn><mi>h</mi></mrow></mfrac></math> , <math><mi>S</mi><mo>(</mo><msup><mi>h</mi><mo>'</mo></msup><mo>)</mo><mo>=</mo><mfrac><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup><mrow><mi>e</mi><mo>log</mo><msup><mi>h</mi><mrow><mo>'</mo><mfrac><mn>1</mn><mrow><msup><mi>h</mi><mo>'</mo></msup><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfrac></math> , <math><mi>h</mi><mo>=</mo><mfrac><mi>M</mi><mi>m</mi></mfrac></math> , <math><msup><mi>h</mi><mo>'</mo></msup><mo>=</mo><mfrac><msup><mi>M</mi><mo>'</mo></msup><msup><mi>m</mi><mo>'</mo></msup></mfrac></math> , <math><mi>r</mi><mo>=</mo><mo>min</mo><mo>{</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>-</mo><mi>α</mi><mo>}</mo></math> and <math><mi>p</mi><mo>≥</mo><mn>2</mn></math> .</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"154\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1750-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1750-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1750-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
本文改进和推广了由Lin (Stud)引起的一些加权算术-几何算子均值不等式。数学学报,15(5):187-194,2013)。肛门。9:166- 172,2015),设A和B为正运算符。如果0 m≤≤m B的≤≤m或0 m B≤≤m我‘≤≤m,然后积极unital线性映射ΦΦ2(∇αB)≤(K (h) S (h或)]2Φ2(♯αB),Φ2(∇αB)≤(K (h) S (h或)]2[Φ(A)♯αΦ(B)) 2,Φ2 p(∇αB)≤116 (K2 (h) (M2 + M2) 2 s2 (h或)M2m2] pΦ2 p(♯αB),Φ2 p(∇αB)≤116 (K2 (h) (M2 + M2) 2 s2 (h或)M2m2] p(Φ(A)♯αΦ(B)) 2 p,在α∈[0,1],K (h) = (h + 1) 24 h, S (h) = h的1 h 1 elogh的1 h的1 h = Mm, h = m’,r =分钟{α,1 -α}和p≥2。
Weighted arithmetic-geometric operator mean inequalities.
In this paper, we refine and generalize some weighted arithmetic-geometric operator mean inequalities due to Lin (Stud. Math. 215:187-194, 2013) and Zhang (Banach J. Math. Anal. 9:166-172, 2015) as follows: Let A and B be positive operators. If or , then for a positive unital linear map Φ, where , , , , , and .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.