{"title":"一类包含集值算子的广义变分-半变分不等式的适定性。","authors":"Caijing Jiang","doi":"10.1186/s13660-018-1776-x","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of present work is to study some kinds of well-posedness for a class of generalized variational-hemivariational inequality problems involving set-valued operators. Some systematic approaches are presented to establish some equivalence theorems between several classes of well-posedness for the inequality problems and some corresponding metric characterizations, which generalize many known results. Finally, the well-posedness for a class of generalized mixed equilibrium problems is also considered.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"187"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1776-x","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for a class of generalized variational-hemivariational inequalities involving set-valued operators.\",\"authors\":\"Caijing Jiang\",\"doi\":\"10.1186/s13660-018-1776-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of present work is to study some kinds of well-posedness for a class of generalized variational-hemivariational inequality problems involving set-valued operators. Some systematic approaches are presented to establish some equivalence theorems between several classes of well-posedness for the inequality problems and some corresponding metric characterizations, which generalize many known results. Finally, the well-posedness for a class of generalized mixed equilibrium problems is also considered.</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"187\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1776-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1776-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1776-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Well-posedness for a class of generalized variational-hemivariational inequalities involving set-valued operators.
The aim of present work is to study some kinds of well-posedness for a class of generalized variational-hemivariational inequality problems involving set-valued operators. Some systematic approaches are presented to establish some equivalence theorems between several classes of well-posedness for the inequality problems and some corresponding metric characterizations, which generalize many known results. Finally, the well-posedness for a class of generalized mixed equilibrium problems is also considered.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.