The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-22 DOI:10.1186/s13660-018-1716-9
Kanyarat Cheawchan, Atid Kangtunyakarn
{"title":"The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications.","authors":"Kanyarat Cheawchan,&nbsp;Atid Kangtunyakarn","doi":"10.1186/s13660-018-1716-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce a new problem, the modified split generalized equilibrium problem, which extends the generalized equilibrium problem, the split equilibrium problem and the split variational inequality problem. We introduce a new method of an iterative scheme <math><mo>{</mo><msub><mi>x</mi><mi>n</mi></msub><mo>}</mo></math> for finding a common element of the set of solutions of variational inequality problems and the set of common fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions of the modified split generalized equilibrium problem without assuming a demicloseness condition and <math><msub><mi>T</mi><mi>ω</mi></msub><mo>:</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>-</mo><mi>ω</mi><mo>)</mo><mi>I</mi><mo>+</mo><mi>ω</mi><mi>T</mi></math> , where <i>T</i> is a quasi-nonexpansive mapping and <math><mi>ω</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mn>2</mn></mfrac><mo>)</mo></math> ; a difficult proof in the framework of Hilbert space. In addition, we give a numerical example to support our main result.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"122"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1716-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1716-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we introduce a new problem, the modified split generalized equilibrium problem, which extends the generalized equilibrium problem, the split equilibrium problem and the split variational inequality problem. We introduce a new method of an iterative scheme {xn} for finding a common element of the set of solutions of variational inequality problems and the set of common fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions of the modified split generalized equilibrium problem without assuming a demicloseness condition and Tω:=(1-ω)I+ωT , where T is a quasi-nonexpansive mapping and ω(0,12) ; a difficult proof in the framework of Hilbert space. In addition, we give a numerical example to support our main result.

Abstract Image

拟非扩张映射的修正分裂广义平衡问题及其应用。
本文引入了一个新的问题,即改进的分裂广义平衡问题,它扩展了广义平衡问题、分裂平衡问题和分裂变分不等式问题。本文引入了一种新的迭代格式{xn}的方法,用于求变分不等式问题的解集和有限族拟非扩张映射的公共不动点集以及修正分裂广义平衡问题的解集的公共不动点集,而不假设半密性条件和Tω:=(1-ω)I+ωT,其中T是拟非扩张映射,ω∈(0,12);在希尔伯特空间的框架中一个困难的证明。此外,我们给出了一个数值例子来支持我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信