一类n维各向异性Sobolev不等式。

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-05 DOI:10.1186/s13660-018-1754-3
Lirong Huang, Eugenio Rocha
{"title":"一类n维各向异性Sobolev不等式。","authors":"Lirong Huang,&nbsp;Eugenio Rocha","doi":"10.1186/s13660-018-1754-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the smallest constant <i>α</i> in the anisotropic Sobolev inequality of the form <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mi>p</mi><mi>p</mi></msubsup><mo>≤</mo><mi>α</mi><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi>N</mi><mo>)</mo><mi>p</mi></mrow><mn>2</mn></mfrac></msubsup><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>N</mi><mo>(</mo><mi>p</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mn>2</mn></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>p</mi><mo>-</mo><mn>2</mn></mrow><mn>2</mn></mfrac></msubsup></math></dispformula> and the smallest constant <i>β</i> in the inequality <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><msub><mi>p</mi><mo>∗</mo></msub><msub><mi>p</mi><mo>∗</mo></msub></msubsup><mo>≤</mo><mi>β</mi><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mn>2</mn><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><mo>,</mo></math></dispformula> where <math><mi>V</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>y</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mi>R</mi><mi>N</mi></msup></math> with <math><mi>N</mi><mo>≥</mo><mn>3</mn></math> and <math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mi>p</mi><mo>∗</mo></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"163"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1754-3","citationCount":"1","resultStr":"{\"title\":\"On a class of N-dimensional anisotropic Sobolev inequalities.\",\"authors\":\"Lirong Huang,&nbsp;Eugenio Rocha\",\"doi\":\"10.1186/s13660-018-1754-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study the smallest constant <i>α</i> in the anisotropic Sobolev inequality of the form <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mi>p</mi><mi>p</mi></msubsup><mo>≤</mo><mi>α</mi><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi>N</mi><mo>)</mo><mi>p</mi></mrow><mn>2</mn></mfrac></msubsup><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>N</mi><mo>(</mo><mi>p</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mn>2</mn></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>p</mi><mo>-</mo><mn>2</mn></mrow><mn>2</mn></mfrac></msubsup></math></dispformula> and the smallest constant <i>β</i> in the inequality <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><msub><mi>p</mi><mo>∗</mo></msub><msub><mi>p</mi><mo>∗</mo></msub></msubsup><mo>≤</mo><mi>β</mi><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mn>2</mn><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><mo>,</mo></math></dispformula> where <math><mi>V</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>y</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mi>R</mi><mi>N</mi></msup></math> with <math><mi>N</mi><mo>≥</mo><mn>3</mn></math> and <math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mi>p</mi><mo>∗</mo></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"163\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1754-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1754-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1754-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了形式为∥u∥pp≤α∥u∥22(2N-1)+(3-2N)p2∥ux∥2N(p-2)2∏k=1N-1∥Dx-1∂yku∥2p-22的各向异性Sobolev不等式中的最小常数α和不等式∥u∥p∗p∗≤β∥∥Dx-1∂yku∥222N-3∏k=1N-1∥Dx-1∂yku∥222N-3的最小常数β,其中V:=(x,y1,…,N-1)∈RN, N≥3,2pp∗=2(2N-1)2N-3。用变分方法和标度技术对这些常数进行表征。这里使用的技术似乎有独立的利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of N-dimensional anisotropic Sobolev inequalities.

In this paper, we study the smallest constant α in the anisotropic Sobolev inequality of the form uppαu22(2N-1)+(3-2N)p2ux2N(p-2)2k=1N-1Dx-1yku2p-22 and the smallest constant β in the inequality uppβux22N2N-3k=1N-1Dx-1yku222N-3, where V:=(x,y1,,yN-1)RN with N3 and 2<p<p=2(2N-1)2N-3 . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信