{"title":"On a class of N-dimensional anisotropic Sobolev inequalities.","authors":"Lirong Huang, Eugenio Rocha","doi":"10.1186/s13660-018-1754-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the smallest constant <i>α</i> in the anisotropic Sobolev inequality of the form <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mi>p</mi><mi>p</mi></msubsup><mo>≤</mo><mi>α</mi><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi>N</mi><mo>)</mo><mi>p</mi></mrow><mn>2</mn></mfrac></msubsup><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>N</mi><mo>(</mo><mi>p</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mn>2</mn></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mi>p</mi><mo>-</mo><mn>2</mn></mrow><mn>2</mn></mfrac></msubsup></math></dispformula> and the smallest constant <i>β</i> in the inequality <dispformula><math><msubsup><mrow><mo>∥</mo><mi>u</mi><mo>∥</mo></mrow><msub><mi>p</mi><mo>∗</mo></msub><msub><mi>p</mi><mo>∗</mo></msub></msubsup><mo>≤</mo><mi>β</mi><msubsup><mrow><mo>∥</mo><msub><mi>u</mi><mi>x</mi></msub><mo>∥</mo></mrow><mn>2</mn><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></munderover><msubsup><mrow><mo>∥</mo><msubsup><mi>D</mi><mi>x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>∂</mi><msub><mi>y</mi><mi>k</mi></msub></msub><mi>u</mi><mo>∥</mo></mrow><mn>2</mn><mfrac><mn>2</mn><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></msubsup><mo>,</mo></math></dispformula> where <math><mi>V</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>y</mi><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mi>R</mi><mi>N</mi></msup></math> with <math><mi>N</mi><mo>≥</mo><mn>3</mn></math> and <math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mi>p</mi><mo>∗</mo></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>N</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mi>N</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1754-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1754-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study the smallest constant α in the anisotropic Sobolev inequality of the form and the smallest constant β in the inequality where with and . These constants are characterized by variational methods and scaling techniques. The techniques used here seem to have independent interests.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.