Nature Reviews Neuroscience最新文献

筛选
英文 中文
Predicting natural behaviour by perturbation 通过扰动预测自然行为
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-02 DOI: 10.1038/s41583-024-00842-w
Jake Rogers
{"title":"Predicting natural behaviour by perturbation","authors":"Jake Rogers","doi":"10.1038/s41583-024-00842-w","DOIUrl":"10.1038/s41583-024-00842-w","url":null,"abstract":"A new modelling method developed in male Drosophila melanogaster maps how populations of neurons transform visual stimuli into courtship behaviours without recording neural activity.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"516-516"},"PeriodicalIF":28.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect neurogenesis in space and time 空间和时间上的间接神经发生。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-01 DOI: 10.1038/s41583-024-00833-x
Stefan Thor
{"title":"Indirect neurogenesis in space and time","authors":"Stefan Thor","doi":"10.1038/s41583-024-00833-x","DOIUrl":"10.1038/s41583-024-00833-x","url":null,"abstract":"During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process. Central nervous system (CNS) neurons and glial cells are generated by both direct and indirect neurogenesis. In this Review, Thor outlines the landscape of indirect neurogenesis during CNS development in key species, including humans, and describes the main genetic mechanisms that contribute to its region-specific, neural progenitor cell-specific and temporal control.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"519-534"},"PeriodicalIF":28.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wrapping up reward 总结奖励。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-01 DOI: 10.1038/s41583-024-00841-x
Sian Lewis
{"title":"Wrapping up reward","authors":"Sian Lewis","doi":"10.1038/s41583-024-00841-x","DOIUrl":"10.1038/s41583-024-00841-x","url":null,"abstract":"The maladaptive reward learning associated with morphine administration is shown here to be mediated by changes in dopamine-release dynamics in reward circuitry resulting from increased myelination specifically in the ventral tegmental area.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"515-515"},"PeriodicalIF":28.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the cell-type-specific effects of ageing in the human cortex 绘制人类大脑皮层老化对细胞类型特异性影响的图谱
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-01 DOI: 10.1038/s41583-024-00843-9
Katherine Whalley
{"title":"Mapping the cell-type-specific effects of ageing in the human cortex","authors":"Katherine Whalley","doi":"10.1038/s41583-024-00843-9","DOIUrl":"10.1038/s41583-024-00843-9","url":null,"abstract":"A study maps the effects of ageing and sex on gene regulation in specific human cortical cell types.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"515-515"},"PeriodicalIF":28.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timescales of learning in prefrontal cortex 前额叶皮层的学习时标
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-27 DOI: 10.1038/s41583-024-00836-8
Jacob A. Miller, Christos Constantinidis
{"title":"Timescales of learning in prefrontal cortex","authors":"Jacob A. Miller, Christos Constantinidis","doi":"10.1038/s41583-024-00836-8","DOIUrl":"10.1038/s41583-024-00836-8","url":null,"abstract":"The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning — that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour. The prefrontal cortex is critical for working memory, over a timescale of seconds. In this Review, Miller and Constantinidis examine how the prefrontal cortex facilitates the integration of memory systems across other timescales as well. In this framework of prefrontal learning, short-term memory and long-term memory interact to serve goal-directed behaviour.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"597-610"},"PeriodicalIF":28.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why so slow? Models of parkinsonian bradykinesia 为何如此缓慢?帕金森病运动迟缓的模型
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-27 DOI: 10.1038/s41583-024-00830-0
David Williams
{"title":"Why so slow? Models of parkinsonian bradykinesia","authors":"David Williams","doi":"10.1038/s41583-024-00830-0","DOIUrl":"10.1038/s41583-024-00830-0","url":null,"abstract":"Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions. There are a number of models that have attempted to explain why people with Parkinson disease move slowly. In this Perspective, Williams identifies the inconsistencies in these models and suggests that these may be addressed by a different model that considers disordered information transmission as fundamental to slow movement development.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"573-586"},"PeriodicalIF":28.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply to ‘Causal prominence for neuroscience’ 回复 "神经科学的因果关系"。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-20 DOI: 10.1038/s41583-024-00839-5
Lauren N. Ross, Dani S. Bassett
{"title":"Reply to ‘Causal prominence for neuroscience’","authors":"Lauren N. Ross, Dani S. Bassett","doi":"10.1038/s41583-024-00839-5","DOIUrl":"10.1038/s41583-024-00839-5","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"592-592"},"PeriodicalIF":28.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00839-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal prominence for neuroscience 神经科学的因果关系突出。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-20 DOI: 10.1038/s41583-024-00838-6
Philip Tseng, Tony Cheng
{"title":"Causal prominence for neuroscience","authors":"Philip Tseng, Tony Cheng","doi":"10.1038/s41583-024-00838-6","DOIUrl":"10.1038/s41583-024-00838-6","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"591-591"},"PeriodicalIF":28.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00838-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The power of direct observation: discovery of REM sleep 直接观察的力量:快速眼动睡眠的发现。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-20 DOI: 10.1038/s41583-024-00840-y
Danqian Liu
{"title":"The power of direct observation: discovery of REM sleep","authors":"Danqian Liu","doi":"10.1038/s41583-024-00840-y","DOIUrl":"10.1038/s41583-024-00840-y","url":null,"abstract":"In this Journal Club, Danqian Liu describes the 1953 paper that reported the discovery of rapid eye movement (REM) sleep.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"595-595"},"PeriodicalIF":28.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene therapy for CNS disorders: modalities, delivery and translational challenges 中枢神经系统疾病的基因治疗:模式、传输和转化挑战
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-06-19 DOI: 10.1038/s41583-024-00829-7
Jingjing Gao, Swetharajan Gunasekar, Ziting (Judy) Xia, Kiruba Shalin, Christopher Jiang, Hao Chen, Dongtak Lee, Sohyung Lee, Nishkal D. Pisal, James N. Luo, Ana Griciuc, Jeffrey M. Karp, Rudolph Tanzi, Nitin Joshi
{"title":"Gene therapy for CNS disorders: modalities, delivery and translational challenges","authors":"Jingjing Gao, Swetharajan Gunasekar, Ziting (Judy) Xia, Kiruba Shalin, Christopher Jiang, Hao Chen, Dongtak Lee, Sohyung Lee, Nishkal D. Pisal, James N. Luo, Ana Griciuc, Jeffrey M. Karp, Rudolph Tanzi, Nitin Joshi","doi":"10.1038/s41583-024-00829-7","DOIUrl":"10.1038/s41583-024-00829-7","url":null,"abstract":"Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders. Recent advances in the development of gene therapy tools provide hope that these approaches might modulate the altered gene expression that characterizes many CNS disorders. Gao et al. provide an overview of current gene therapy strategies, highlighting the interdependence of therapeutic modality, delivery vehicle and administration route for translational success.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"553-572"},"PeriodicalIF":28.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信