Nature Reviews Neuroscience最新文献

筛选
英文 中文
The language network is topographically diverse and driven by rapid syntactic inferences 语言网络具有拓扑多样性,由快速句法推断驱动。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-08-09 DOI: 10.1038/s41583-024-00852-8
Elliot Murphy, Oscar Woolnough
{"title":"The language network is topographically diverse and driven by rapid syntactic inferences","authors":"Elliot Murphy, Oscar Woolnough","doi":"10.1038/s41583-024-00852-8","DOIUrl":"10.1038/s41583-024-00852-8","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"705-705"},"PeriodicalIF":28.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00852-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure–function coupling in macroscale human brain networks 宏观尺度人脑网络中的结构-功能耦合。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-08-05 DOI: 10.1038/s41583-024-00846-6
Panagiotis Fotiadis, Linden Parkes, Kathryn A. Davis, Theodore D. Satterthwaite, Russell T. Shinohara, Dani S. Bassett
{"title":"Structure–function coupling in macroscale human brain networks","authors":"Panagiotis Fotiadis, Linden Parkes, Kathryn A. Davis, Theodore D. Satterthwaite, Russell T. Shinohara, Dani S. Bassett","doi":"10.1038/s41583-024-00846-6","DOIUrl":"10.1038/s41583-024-00846-6","url":null,"abstract":"Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure–function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals. How the complex functionality of the human brain depends on its underlying white matter architecture is incompletely understood. In this Review, Fotiadis et al. synthesize the heterogeneous macroscale expression of normative structure–function coupling and then discuss how it is affected in neurological and psychiatric conditions.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"688-704"},"PeriodicalIF":28.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circuit refinement without microglia 没有小胶质细胞的电路完善
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-08-01 DOI: 10.1038/s41583-024-00855-5
Darran Yates
{"title":"Circuit refinement without microglia","authors":"Darran Yates","doi":"10.1038/s41583-024-00855-5","DOIUrl":"10.1038/s41583-024-00855-5","url":null,"abstract":"A study finds that microglia depletion has no effect on experience-dependent maturation of visual cortex circuitry in mice.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"594-594"},"PeriodicalIF":28.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-timescale neural dynamics for multisensory integration 多感官整合的多时间尺度神经动力学
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-08-01 DOI: 10.1038/s41583-024-00845-7
Daniel Senkowski, Andreas K. Engel
{"title":"Multi-timescale neural dynamics for multisensory integration","authors":"Daniel Senkowski, Andreas K. Engel","doi":"10.1038/s41583-024-00845-7","DOIUrl":"10.1038/s41583-024-00845-7","url":null,"abstract":"Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase–amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom–up and cognitive top–down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered. How the brain routinely processes information from different sensory modalities during everyday tasks is not well understood. In this Perspective, Engel and Senkowski propose how oscillatory neural mechanisms operating at multiple timescales within and across brain networks can mediate such multisensory integration.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"625-642"},"PeriodicalIF":28.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Psilocybin desynchronization persists in the human brain 迷幻药在人脑中的不同步现象持续存在。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-31 DOI: 10.1038/s41583-024-00854-6
Jake Rogers
{"title":"Psilocybin desynchronization persists in the human brain","authors":"Jake Rogers","doi":"10.1038/s41583-024-00854-6","DOIUrl":"10.1038/s41583-024-00854-6","url":null,"abstract":"Longitudinal precision functional mapping reveals that acute desynchronization of functional connectivity organization induced by the psychedelic psilocybin can persist long-term in the human brain.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"593-593"},"PeriodicalIF":28.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variants in a noncoding gene drive prevalent neurodevelopmental disorder 一种非编码基因的变异驱动了神经发育障碍的流行。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-29 DOI: 10.1038/s41583-024-00850-w
Katherine Whalley
{"title":"Variants in a noncoding gene drive prevalent neurodevelopmental disorder","authors":"Katherine Whalley","doi":"10.1038/s41583-024-00850-w","DOIUrl":"10.1038/s41583-024-00850-w","url":null,"abstract":"Two studies use large-scale genome sequencing data to identify variants in a noncoding gene that cause a neurodevelopmental syndrome in many individuals.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"594-594"},"PeriodicalIF":28.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thirsty work for the cerebellum 小脑的饥渴工作
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-24 DOI: 10.1038/s41583-024-00848-4
Katherine Whalley
{"title":"Thirsty work for the cerebellum","authors":"Katherine Whalley","doi":"10.1038/s41583-024-00848-4","DOIUrl":"10.1038/s41583-024-00848-4","url":null,"abstract":"Cerebellar Purkinje neurons modulate thirst in mice","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"593-593"},"PeriodicalIF":28.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schizophrenia genomics: genetic complexity and functional insights 精神分裂症基因组学:遗传复杂性和功能性见解。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-19 DOI: 10.1038/s41583-024-00837-7
Patrick F. Sullivan, Shuyang Yao, Jens Hjerling-Leffler
{"title":"Schizophrenia genomics: genetic complexity and functional insights","authors":"Patrick F. Sullivan, Shuyang Yao, Jens Hjerling-Leffler","doi":"10.1038/s41583-024-00837-7","DOIUrl":"10.1038/s41583-024-00837-7","url":null,"abstract":"Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information. In recent years, genomic studies have identified numerous genetic variants as risk factors for schizophrenia. Sullivan et al. describe our current understanding of the complex genetic architecture of schizophrenia and consider how the genomic findings can be interrogated to boost our understanding of the neurobiology of the disorder.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"611-624"},"PeriodicalIF":28.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Macroscopic gradients of synaptic excitation and inhibition in the neocortex 出版商更正:新皮层中突触兴奋和抑制的宏观梯度。
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-16 DOI: 10.1038/s41583-024-00847-5
Xiao-Jing Wang
{"title":"Publisher Correction: Macroscopic gradients of synaptic excitation and inhibition in the neocortex","authors":"Xiao-Jing Wang","doi":"10.1038/s41583-024-00847-5","DOIUrl":"10.1038/s41583-024-00847-5","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"643-643"},"PeriodicalIF":28.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00847-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurogenic exacerbation of psoriasis 银屑病的神经源性加重
IF 28.7 1区 医学
Nature Reviews Neuroscience Pub Date : 2024-07-08 DOI: 10.1038/s41583-024-00844-8
Darran Yates
{"title":"Neurogenic exacerbation of psoriasis","authors":"Darran Yates","doi":"10.1038/s41583-024-00844-8","DOIUrl":"10.1038/s41583-024-00844-8","url":null,"abstract":"Acid-sensing ion channel 3 in nociceptors exacerbates inflammation in psoriasis by inducing the release of calcitonin gene-related peptide from these neurons.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"516-516"},"PeriodicalIF":28.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信