{"title":"The language network is topographically diverse and driven by rapid syntactic inferences","authors":"Elliot Murphy, Oscar Woolnough","doi":"10.1038/s41583-024-00852-8","DOIUrl":"10.1038/s41583-024-00852-8","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"705-705"},"PeriodicalIF":28.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00852-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Panagiotis Fotiadis, Linden Parkes, Kathryn A. Davis, Theodore D. Satterthwaite, Russell T. Shinohara, Dani S. Bassett
{"title":"Structure–function coupling in macroscale human brain networks","authors":"Panagiotis Fotiadis, Linden Parkes, Kathryn A. Davis, Theodore D. Satterthwaite, Russell T. Shinohara, Dani S. Bassett","doi":"10.1038/s41583-024-00846-6","DOIUrl":"10.1038/s41583-024-00846-6","url":null,"abstract":"Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure–function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals. How the complex functionality of the human brain depends on its underlying white matter architecture is incompletely understood. In this Review, Fotiadis et al. synthesize the heterogeneous macroscale expression of normative structure–function coupling and then discuss how it is affected in neurological and psychiatric conditions.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"688-704"},"PeriodicalIF":28.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circuit refinement without microglia","authors":"Darran Yates","doi":"10.1038/s41583-024-00855-5","DOIUrl":"10.1038/s41583-024-00855-5","url":null,"abstract":"A study finds that microglia depletion has no effect on experience-dependent maturation of visual cortex circuitry in mice.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"594-594"},"PeriodicalIF":28.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-timescale neural dynamics for multisensory integration","authors":"Daniel Senkowski, Andreas K. Engel","doi":"10.1038/s41583-024-00845-7","DOIUrl":"10.1038/s41583-024-00845-7","url":null,"abstract":"Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase–amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom–up and cognitive top–down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered. How the brain routinely processes information from different sensory modalities during everyday tasks is not well understood. In this Perspective, Engel and Senkowski propose how oscillatory neural mechanisms operating at multiple timescales within and across brain networks can mediate such multisensory integration.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"625-642"},"PeriodicalIF":28.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Psilocybin desynchronization persists in the human brain","authors":"Jake Rogers","doi":"10.1038/s41583-024-00854-6","DOIUrl":"10.1038/s41583-024-00854-6","url":null,"abstract":"Longitudinal precision functional mapping reveals that acute desynchronization of functional connectivity organization induced by the psychedelic psilocybin can persist long-term in the human brain.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"593-593"},"PeriodicalIF":28.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variants in a noncoding gene drive prevalent neurodevelopmental disorder","authors":"Katherine Whalley","doi":"10.1038/s41583-024-00850-w","DOIUrl":"10.1038/s41583-024-00850-w","url":null,"abstract":"Two studies use large-scale genome sequencing data to identify variants in a noncoding gene that cause a neurodevelopmental syndrome in many individuals.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"594-594"},"PeriodicalIF":28.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thirsty work for the cerebellum","authors":"Katherine Whalley","doi":"10.1038/s41583-024-00848-4","DOIUrl":"10.1038/s41583-024-00848-4","url":null,"abstract":"Cerebellar Purkinje neurons modulate thirst in mice","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"593-593"},"PeriodicalIF":28.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick F. Sullivan, Shuyang Yao, Jens Hjerling-Leffler
{"title":"Schizophrenia genomics: genetic complexity and functional insights","authors":"Patrick F. Sullivan, Shuyang Yao, Jens Hjerling-Leffler","doi":"10.1038/s41583-024-00837-7","DOIUrl":"10.1038/s41583-024-00837-7","url":null,"abstract":"Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information. In recent years, genomic studies have identified numerous genetic variants as risk factors for schizophrenia. Sullivan et al. describe our current understanding of the complex genetic architecture of schizophrenia and consider how the genomic findings can be interrogated to boost our understanding of the neurobiology of the disorder.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"611-624"},"PeriodicalIF":28.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction: Macroscopic gradients of synaptic excitation and inhibition in the neocortex","authors":"Xiao-Jing Wang","doi":"10.1038/s41583-024-00847-5","DOIUrl":"10.1038/s41583-024-00847-5","url":null,"abstract":"","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 9","pages":"643-643"},"PeriodicalIF":28.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41583-024-00847-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neurogenic exacerbation of psoriasis","authors":"Darran Yates","doi":"10.1038/s41583-024-00844-8","DOIUrl":"10.1038/s41583-024-00844-8","url":null,"abstract":"Acid-sensing ion channel 3 in nociceptors exacerbates inflammation in psoriasis by inducing the release of calcitonin gene-related peptide from these neurons.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 8","pages":"516-516"},"PeriodicalIF":28.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}