Evodevo最新文献

筛选
英文 中文
Correction to: Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. 修正:打破哺乳动物的进化和多效性限制:关于树懒、海牛和同型变异。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-11-22 DOI: 10.1186/s13227-021-00183-0
Irma Varela-Lasheras, Alexander J Bakker, Steven D van der Mije, Johan A J Metz, Joris van Alphen, Frietson Galis
{"title":"Correction to: Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations.","authors":"Irma Varela-Lasheras, Alexander J Bakker, Steven D van der Mije, Johan A J Metz, Joris van Alphen, Frietson Galis","doi":"10.1186/s13227-021-00183-0","DOIUrl":"https://doi.org/10.1186/s13227-021-00183-0","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"13"},"PeriodicalIF":4.1,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39759926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning. 螯合 Wnt 基因表达图谱:节肢动物 Wnt 模式复杂性的新见解。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-11-09 DOI: 10.1186/s13227-021-00182-1
Ralf Janssen, Matthias Pechmann, Natascha Turetzek
{"title":"A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning.","authors":"Ralf Janssen, Matthias Pechmann, Natascha Turetzek","doi":"10.1186/s13227-021-00182-1","DOIUrl":"10.1186/s13227-021-00182-1","url":null,"abstract":"<p><p>The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"12"},"PeriodicalIF":4.1,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39710875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage. 双壳系中螺旋体特异性TALE基因的重复和卵裂球规范机制的进化。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-10-18 DOI: 10.1186/s13227-021-00181-2
Supanat Phuangphong, Jumpei Tsunoda, Hiroshi Wada, Yoshiaki Morino
{"title":"Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage.","authors":"Supanat Phuangphong,&nbsp;Jumpei Tsunoda,&nbsp;Hiroshi Wada,&nbsp;Yoshiaki Morino","doi":"10.1186/s13227-021-00181-2","DOIUrl":"https://doi.org/10.1186/s13227-021-00181-2","url":null,"abstract":"<p><strong>Background: </strong>Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates.</p><p><strong>Results: </strong>We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts.</p><p><strong>Conclusions: </strong>These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"11"},"PeriodicalIF":4.1,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39529273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking the evolution of development of stem vascular system in Nyctaginaceae and its correlation to habit and species diversification 龙舌兰科植物茎维管系统的演化及其与习性和物种多样化的关系
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-10-11 DOI: 10.21203/rs.3.rs-958904/v1
Israel L. Cunha Neto, Marcelo R. Pace, Rebeca Hernández-Gutiérrez, V. Angyalossy
{"title":"Linking the evolution of development of stem vascular system in Nyctaginaceae and its correlation to habit and species diversification","authors":"Israel L. Cunha Neto, Marcelo R. Pace, Rebeca Hernández-Gutiérrez, V. Angyalossy","doi":"10.21203/rs.3.rs-958904/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-958904/v1","url":null,"abstract":"Background Alternative patterns of secondary growth in stems of Nyctaginaceae is present in all growth habits of the family and have been known for a long time. However, the interpretation of types of cambial variants have been controversial, given that different authors have given them different developmental interpretations. The different growth habits coupled with an enormous stem anatomical diversity offers the unique opportunity to investigate the evolution of complex developments, to address how these anatomies shifted within habits, and how the acquisition of novel cambial variants and habit transitions impacted the diversification of the family. Methods We integrated developmental data with a phylogenetic framework to investigate the diversity and evolution of stem anatomy in Nyctaginaceae using phylogenetic comparative methods, reconstructing ancestral states, and examining whether anatomical shifts correspond to species diversification rate shifts in the family. Results Two types of cambial variants, interxylary phloem and successive cambia, were recorded in Nyctaginaceae, which result from four different ontogenies. These ontogenetic trajectories depart from two distinct primary vascular structures (regular or polycyclic eustele) yet, they contain shared developmental stages which generate stem morphologies with deconstructed boundaries of morphological categories (continuum morphology). Unlike our a priori hypotheses, interxylary phloem is reconstructed as the ancestral character for the family, with three ontogenies characterized as successive cambia evolving in few taxa. Cambial variants are not contingent on habits, and their transitions are independent from species diversification. Conclusions Our findings suggest that multiple developmental mechanisms, such as heterochrony and heterotopy, generate the transitions between interxylary phloem and successive cambia. Intermediate between these two extremes are present in Nyctaginaceae, suggesting a continuum morphology across the family as a generator of anatomical diversity.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"13 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67972247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Nereid on the rise: Platynereis as a model system. Nereid的崛起:Platynereis作为一个模型系统。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-09-27 DOI: 10.1186/s13227-021-00180-3
B Duygu Özpolat, Nadine Randel, Elizabeth A Williams, Luis Alberto Bezares-Calderón, Gabriele Andreatta, Guillaume Balavoine, Paola Y Bertucci, David E K Ferrier, Maria Cristina Gambi, Eve Gazave, Mette Handberg-Thorsager, Jörg Hardege, Cameron Hird, Yu-Wen Hsieh, Jerome Hui, Kevin Nzumbi Mutemi, Stephan Q Schneider, Oleg Simakov, Hernando M Vergara, Michel Vervoort, Gáspár Jékely, Kristin Tessmar-Raible, Florian Raible, Detlev Arendt
{"title":"The Nereid on the rise: Platynereis as a model system.","authors":"B Duygu Özpolat, Nadine Randel, Elizabeth A Williams, Luis Alberto Bezares-Calderón, Gabriele Andreatta, Guillaume Balavoine, Paola Y Bertucci, David E K Ferrier, Maria Cristina Gambi, Eve Gazave, Mette Handberg-Thorsager, Jörg Hardege, Cameron Hird, Yu-Wen Hsieh, Jerome Hui, Kevin Nzumbi Mutemi, Stephan Q Schneider, Oleg Simakov, Hernando M Vergara, Michel Vervoort, Gáspár Jékely, Kristin Tessmar-Raible, Florian Raible, Detlev Arendt","doi":"10.1186/s13227-021-00180-3","DOIUrl":"10.1186/s13227-021-00180-3","url":null,"abstract":"<p><p>The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"10"},"PeriodicalIF":4.1,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39463078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage 双壳系中螺旋体特异性TALE基因的重复和卵裂球规范机制的进化
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-07-23 DOI: 10.21203/RS.3.RS-733292/V1
Supanat Phuangphong, Jumpei Tsunoda, H. Wada, Yoshiaki Morino
{"title":"Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage","authors":"Supanat Phuangphong, Jumpei Tsunoda, H. Wada, Yoshiaki Morino","doi":"10.21203/RS.3.RS-733292/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-733292/V1","url":null,"abstract":"Background Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. Results We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. Conclusions These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42064026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cell-specific expression and individual function of prohormone convertase PC1/3 in Tribolium larval growth highlights major evolutionary changes between beetle and fly neuroendocrine systems. 激素原转化酶PC1/3在Tribolium幼虫生长中的细胞特异性表达和个体功能揭示了甲虫和苍蝇神经内分泌系统的主要进化变化。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-06-29 DOI: 10.1186/s13227-021-00179-w
Sonja Fritzsche, Vera S Hunnekuhl
{"title":"Cell-specific expression and individual function of prohormone convertase PC1/3 in Tribolium larval growth highlights major evolutionary changes between beetle and fly neuroendocrine systems.","authors":"Sonja Fritzsche,&nbsp;Vera S Hunnekuhl","doi":"10.1186/s13227-021-00179-w","DOIUrl":"https://doi.org/10.1186/s13227-021-00179-w","url":null,"abstract":"<p><strong>Background: </strong>The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome.</p><p><strong>Results: </strong>In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles' viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain.</p><p><strong>Conclusions: </strong>The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"9"},"PeriodicalIF":4.1,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-021-00179-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39118436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Variation on a theme: pigmentation variants and mutants of anemonefish. 主题变异:无须鳕的色素变异和突变体。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-06-19 DOI: 10.1186/s13227-021-00178-x
Marleen Klann, Manon Mercader, Lilian Carlu, Kina Hayashi, James Davis Reimer, Vincent Laudet
{"title":"Variation on a theme: pigmentation variants and mutants of anemonefish.","authors":"Marleen Klann, Manon Mercader, Lilian Carlu, Kina Hayashi, James Davis Reimer, Vincent Laudet","doi":"10.1186/s13227-021-00178-x","DOIUrl":"10.1186/s13227-021-00178-x","url":null,"abstract":"<p><p>Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"8"},"PeriodicalIF":4.1,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39247755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Panarthropod tiptop/teashirt and spalt orthologs and their potential role as "trunk"-selector genes. 全节肢动物顶端/衬衫和空间同源基因及其作为“树干”选择基因的潜在作用。
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-06-02 DOI: 10.1186/s13227-021-00177-y
Brenda I Medina-Jiménez, Graham E Budd, Ralf Janssen
{"title":"Panarthropod tiptop/teashirt and spalt orthologs and their potential role as \"trunk\"-selector genes.","authors":"Brenda I Medina-Jiménez,&nbsp;Graham E Budd,&nbsp;Ralf Janssen","doi":"10.1186/s13227-021-00177-y","DOIUrl":"https://doi.org/10.1186/s13227-021-00177-y","url":null,"abstract":"<p><strong>Background: </strong>In the vinegar fly Drosophila melanogaster, the homeodomain containing transcription factor Teashirt (Tsh) appears to specify trunk identity in concert with the function of the Hox genes. While in Drosophila there is a second gene closely related to tsh, called tiptop (tio), in other arthropods species only one copy exists (called tio/tsh). The expression of tsh and tio/tsh, respectively, is surprisingly similar among arthropods suggesting that its function as trunk selector gene may be conserved. Other research, for example on the beetle Tribolium castaneum, questions even conservation of Tsh function among insects. The zinc-finger transcription factor Spalt (Sal) is involved in the regulation of Drosophila tsh, but this regulatory interaction does not appear to be conserved in Tribolium either. Whether the function and interaction of tsh and sal as potential trunk-specifiers, however, is conserved is still unclear because comparative studies on sal expression (except for Tribolium) are lacking, and functional data are (if at all existing) restricted to Insecta.</p><p><strong>Results: </strong>Here, we provide additional data on arthropod tsh expression, show the first data on onychophoran tio/tsh expression, and provide a comprehensive investigation on sal expression patterns in arthropods and an onychophoran.</p><p><strong>Conclusions: </strong>Our data support the idea that tio/tsh genes are involved in the development of \"trunk\" segments by regulating limb development. Our data suggest further that the function of Sal is indeed unlikely to be conserved in trunk vs head development like in Drosophila, but early expression of sal is in line with a potential homeotic function, at least in Arthropoda.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"7"},"PeriodicalIF":4.1,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-021-00177-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39054965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster. 黑腹果蝇胰岛素信号基因表达的性别特异性可塑性和营养几何学
IF 4.1 2区 生物学
Evodevo Pub Date : 2021-05-14 DOI: 10.1186/s13227-021-00175-0
Jeanne M C McDonald, Pegah Nabili, Lily Thorsen, Sohee Jeon, Alexander W Shingleton
{"title":"Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster.","authors":"Jeanne M C McDonald, Pegah Nabili, Lily Thorsen, Sohee Jeon, Alexander W Shingleton","doi":"10.1186/s13227-021-00175-0","DOIUrl":"10.1186/s13227-021-00175-0","url":null,"abstract":"<p><strong>Background: </strong>Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others' research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach.</p><p><strong>Results: </strong>The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males.</p><p><strong>Conclusion: </strong>Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":"6"},"PeriodicalIF":4.1,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38981791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信