Evodevo最新文献

筛选
英文 中文
Functional evidence supports the potential role of Tbx4-HLEA in the hindlimb degeneration of cetaceans.
IF 4.1 2区 生物学
Evodevo Pub Date : 2025-03-22 DOI: 10.1186/s13227-025-00239-5
Zhenhua Zhang, Yao Liu, Na Liang, Zhenpeng Yu, Luoying Deme, Duo Xu, Jia Liu, Wenhua Ren, Shixia Xu, Guang Yang
{"title":"Functional evidence supports the potential role of Tbx4-HLEA in the hindlimb degeneration of cetaceans.","authors":"Zhenhua Zhang, Yao Liu, Na Liang, Zhenpeng Yu, Luoying Deme, Duo Xu, Jia Liu, Wenhua Ren, Shixia Xu, Guang Yang","doi":"10.1186/s13227-025-00239-5","DOIUrl":"10.1186/s13227-025-00239-5","url":null,"abstract":"<p><p>The evolution of limb morphology plays an important role in animal adaptation to different ecological niches. To fully adapt to aquatic life, cetaceans underwent hindlimb degeneration and forelimb transformed into flipper; however, the molecular mechanisms underlying the limb changes in cetaceans remain unclear. We previous study had shown that the Tbx4 hindlimb enhancer A (Tbx4-HLEA) in cetaceans exhibited specific deletions and nucleotide substitutions, with significantly reduced regulatory activity. To further investigate whether cetacean HLEA has a potential impact on hindlimb development in vivo, a knock-in mouse model was generated by knocking in the homologous cetacean HLEA in the present study. Phenotypic analysis showed a significant reduction in hindlimb bud development in homozygous knock-in mice at embryonic day (E)10.5; however, the phenotypic difference was rescued after E11.5. Transcriptomic and epigenetic analyses indicated that the cetacean HLEA acts as an enhancer in the mouse embryos and significantly reduces the transcriptional expression levels of Tbx4 at E10.5, supporting that downregulation of cetaceans HLEA regulatory activity reduces the expression of Tbx4. Additionally, both the number of activated non-coding elements and chromatin accessibility near Tbx4 were increased in homozygous knock-in mice at E11.5. The functional redundancy of enhancers compensated for the functional defect of cetacean HLEA, rescuing the expression level of Tbx4, and may account for the phenotype restoration after E11.5. In conclusion, our study suggested that the evolution of cetacean HLEA may be an important link with relevant molecular mechanism for the hindlimb degeneration.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"16 1","pages":"3"},"PeriodicalIF":4.1,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shedding light on the embryogenesis and eye development of the troglophile cave spider Tegenaria pagana C. L. Koch, 1840 (Araneae: Agelenidae).
IF 4.1 2区 生物学
Evodevo Pub Date : 2025-03-08 DOI: 10.1186/s13227-025-00238-6
Evgenia A Propistsova, Guilherme Gainett, Ariel D Chipman, Prashant P Sharma, Efrat Gavish-Regev
{"title":"Shedding light on the embryogenesis and eye development of the troglophile cave spider Tegenaria pagana C. L. Koch, 1840 (Araneae: Agelenidae).","authors":"Evgenia A Propistsova, Guilherme Gainett, Ariel D Chipman, Prashant P Sharma, Efrat Gavish-Regev","doi":"10.1186/s13227-025-00238-6","DOIUrl":"10.1186/s13227-025-00238-6","url":null,"abstract":"<p><strong>Background: </strong>Relatively little is known about the diversity of embryonic development across lineages of spiders, even though the study of embryonic development is a primary step in evo-devo studies and essential for understanding phenotypic evolution. Practically nothing is known about embryogenesis in cave-dwelling spiders, animals which play an important role in cave ecosystems and may have remarkable adaptations to aphotic habitats such as loss of eyes.</p><p><strong>Results: </strong>Here, we describe embryogenesis and study the expression patterns of several genes of the Retinal Determination Network (RDN) in the troglophile (species that have pre-adaptations to life in caves, and can complete their life cycle in caves, as well as in epigean habitats) eye-bearing funnel-web spider species Tegenaria pagana C. L. Koch, 1840, using fluorescent staining and confocal microscopy. We discuss the characteristic features of T. pagana embryogenesis and key RDN genes. Although in many respects the embryonic development of different species of entelegyne spiders is similar, we found differences in the rate of development, and the details of the opisthosoma, respiratory system, and brain morphogenesis in comparison with established spider model species. Our data supports the hypothesis of a conserved role of sine oculis gene in the eye formation of arachnids.</p><p><strong>Conclusions: </strong>Given the recent discovery of congeneric cave species with different degrees of eye reduction throughout Israel, these data sets provide a foundational point of comparison for studying eye reduction and eye loss events in the spider genus Tegenaria.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"16 1","pages":"2"},"PeriodicalIF":4.1,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes.
IF 4.1 2区 生物学
Evodevo Pub Date : 2025-02-14 DOI: 10.1186/s13227-025-00237-7
Sally P Leys, Lauren Grombacher, Daniel Field, Glen R D Elliott, Vanessa R Ho, Amanda S Kahn, Pamela J Reid, Ana Riesgo, Emilio Lanna, Yuriy Bobkov, Joseph F Ryan, April L Horton
{"title":"A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes.","authors":"Sally P Leys, Lauren Grombacher, Daniel Field, Glen R D Elliott, Vanessa R Ho, Amanda S Kahn, Pamela J Reid, Ana Riesgo, Emilio Lanna, Yuriy Bobkov, Joseph F Ryan, April L Horton","doi":"10.1186/s13227-025-00237-7","DOIUrl":"10.1186/s13227-025-00237-7","url":null,"abstract":"<p><p>How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"16 1","pages":"1"},"PeriodicalIF":4.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of cephalic fins in manta rays and their relatives: functional evidence for initiation of domain splitting and modulation of the Wnt signaling pathway in the pectoral fin AER of the little skate. 蝠鲼及其近亲头鳍的进化:小鳐胸鳍AER区域分裂起始和Wnt信号通路调节的功能证据。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-12-27 DOI: 10.1186/s13227-024-00233-3
Emily P McFarland, Karen D Crow
{"title":"The evolution of cephalic fins in manta rays and their relatives: functional evidence for initiation of domain splitting and modulation of the Wnt signaling pathway in the pectoral fin AER of the little skate.","authors":"Emily P McFarland, Karen D Crow","doi":"10.1186/s13227-024-00233-3","DOIUrl":"10.1186/s13227-024-00233-3","url":null,"abstract":"<p><strong>Background: </strong>Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion. Paired fin outgrowth is maintained during development by Wnt3, while domain splitting is accomplished by expression of the Wnt antagonist Dkk1, which is differentially expressed in the developing anterior pectoral fins of myliobatids, where cephalic fins separate from pectoral fins. We examine the evolution of this unique feature in the cownose ray (Rhinoptera bonasus), a member of the genus that is sister to Mobula.</p><p><strong>Results: </strong>Here, we provide functional evidence that DKK1 is sufficient to initiate pectoral fin domain splitting. Agarose beads soaked in DKK1 protein were implanted in the pectoral fins of little skate (Leucoraja erinacea) embryos resulting in AER interruption. This disruption arrests fin ray outgrowth, resembling the myliobatid phenotype. In addition, fins that received DKK1 beads exhibit interruption of Axin2 expression, a downstream target of β-catenin-dependent Wnt signaling and a known AER marker. We demonstrate that Msx1 and Lhx2 are also associated with fin expansion at the AER. These results provide functional evidence for the underlying genetic pathway associated with the evolution of a novel paired fin/limb modification in manta rays and their relatives. We introduce the gas/brake pedal model for paired fin remodeling at the AER, which may have been co-opted from domain splitting in pelvic fins of cartilaginous fishes 370 million years earlier.</p><p><strong>Conclusions: </strong>The pectoral fins of manta rays and their relatives represent a dramatic remodel of the ancestral batoid body plan. The premiere feature of this remodel is the cephalic fins, which evolved via domain splitting of the anterior pectoral fins through inhibition of fin ray outgrowth. Here, we functionally validate the role of Dkk1 in the evolution of this phenotype. We find that introduction of ectopic DKK1 is sufficient to recapitulate the myliobatid pectoral fin phenotype in an outgroup lacking cephalic fins via AER interruption and fin ray truncation. Additional gene expression data obtained via in situ hybridization suggests that cephalic fin development may have evolved as a co-option of the pathway specifying claspers as modifications to the pelvic fins, the only other known example of domain splitting in vertebrate appendages.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"17"},"PeriodicalIF":4.1,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conservation of the dehiscence zone gene regulatory network in dicots and the role of the SEEDSTICK ortholog of California poppy (Eschscholzia californica) in fruit development. 加利福尼亚罂粟(Eschscholzia californica)果裂区基因调控网络的保护及籽棒同源物在果实发育中的作用。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-12-27 DOI: 10.1186/s13227-024-00236-0
Dominik Lotz, Le Han Rössner, Katrin Ehlers, Doudou Kong, Clemens Rössner, Oliver Rupp, Annette Becker
{"title":"Conservation of the dehiscence zone gene regulatory network in dicots and the role of the SEEDSTICK ortholog of California poppy (Eschscholzia californica) in fruit development.","authors":"Dominik Lotz, Le Han Rössner, Katrin Ehlers, Doudou Kong, Clemens Rössner, Oliver Rupp, Annette Becker","doi":"10.1186/s13227-024-00236-0","DOIUrl":"10.1186/s13227-024-00236-0","url":null,"abstract":"<p><strong>Background: </strong>Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation. This led to the hypothesis, that homologous gene regulatory networks direct fruit development and dehiscence in both species.</p><p><strong>Results: </strong>Transcriptome analysis of separately collected valve and replum-like tissue of California poppy yielded the SEEDSTICK (STK) ortholog as candidate for dehiscence zone regulation. Expression analysis of STK orthologs from dry dehiscing fruits of legumes (Vicia faba, Glycine max and Pisum sativum) shows their involvement in fruit development. Functional analysis using Virus-Induced Gene Silencing (VIGS) showed premature rupture of fruits and clarified the roles of EscaSTK: an evolutionary conserved role in seed filling and seed coat development, and a novel role in restricting cell divisions in the inner cell layer of the valve.</p><p><strong>Conclusion: </strong>Our analysis shows that the gene regulatory network described in Arabidopsis is significantly different in other dicots, even if their fruits form a dehiscence zone at the valve margins. The ortholog of STK, known to be involved in ovule development and seed abscission in Arabidopsis, was recruited to a network regulating fruit wall proliferation in California poppy. There, EscaSTK allows fruit maturation without premature capsule rupture, highlighting the importance of proper endocarp development for successful seed dispersal.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"16"},"PeriodicalIF":4.1,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of distal limb patterning genes in Hypsibius exemplaris indicate regionalization and suggest distal identity of tardigrade legs. Hypsibius exemplaris远端肢体模式基因的表达表明了区域化,并暗示了迟行者肢体的远端特征。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-11-13 DOI: 10.1186/s13227-024-00235-1
Marc A Mapalo, Mandy Game, Frank W Smith, Javier Ortega-Hernández
{"title":"Expression of distal limb patterning genes in Hypsibius exemplaris indicate regionalization and suggest distal identity of tardigrade legs.","authors":"Marc A Mapalo, Mandy Game, Frank W Smith, Javier Ortega-Hernández","doi":"10.1186/s13227-024-00235-1","DOIUrl":"10.1186/s13227-024-00235-1","url":null,"abstract":"<p><strong>Background: </strong>Panarthropods, a major group of invertebrate animals comprised of arthropods, onychophorans, and tardigrades, are the only limb-bearing members of Ecdysozoa. The complexity and versatility of panarthropod paired limbs has prompted great interest in their development to better understand the formation of these structures and the genes involved in this process. However, studies of limb patterning and development are overwhelmingly focused on arthropods, followed by select work on onychophorans but almost entirely lacking for tardigrades. This model organism bias is inherently limited and precludes a comparative analysis of how panarthropod legs originated, have evolved, and the likely limb patterning genes present in the earliest panarthropod ancestors. In this study, we investigated tardigrade homologs of seven arthropod distal limb patterning genes (apterous, aristaless, BarH1, clawless, Lim1, rotund, and spineless) to better characterize tardigrade limb development in a comparative context.</p><p><strong>Results: </strong>We detected homologs of all seven genes in the eutardigrade Hypsibius exemplaris and heterotardigrade Echiniscoides cf. sigismundi suggesting their conservation in both tardigrade lineages. Hybridization chain reaction experiments in H. exemplaris reveal a regionalized expression pattern for the genes aristaless, BarH1, clawless, rotund and spineless.</p><p><strong>Conclusion: </strong>The observed regionalized expression of the distal limb patterning genes in H. exemplaris might reflect the external morphological features of tardigrade legs, such as the distal claws, sensory organs in the proximal region, and specific muscle attachment sites. The comparison between the expression of these limb patterning genes in H. exemplaris relative to other panarthropods suggests their conserved role in the last common panarthropod ancestor, such as establishing the distal limb end and the distribution of sensory structures. Our results support the hypothesis that tardigrade legs are homologous to the distal region of other panarthropod limbs, as suggested by previous work on the expression of leg gap genes in H. exemplaris.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"15"},"PeriodicalIF":4.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early embryonic development of the German cockroach Blattella germanica. 德国小蠊的早期胚胎发育。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-10-26 DOI: 10.1186/s13227-024-00234-2
Ariel Bar-Lev Viterbo, Judith R Wexler, Orel Mayost Lev-Ari, Ariel D Chipman
{"title":"Early embryonic development of the German cockroach Blattella germanica.","authors":"Ariel Bar-Lev Viterbo, Judith R Wexler, Orel Mayost Lev-Ari, Ariel D Chipman","doi":"10.1186/s13227-024-00234-2","DOIUrl":"10.1186/s13227-024-00234-2","url":null,"abstract":"<p><strong>Background: </strong>Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband. We investigated early development in this species in order to understand how early gene expression is or is not conserved in these insect embryos with distinct early cell behaviors.</p><p><strong>Results: </strong>We present a detailed time series of nuclear division and distribution from fertilization through germband formation and report patterns of expression for the early patterning genes hunchback, caudal, and twist in order to understand early polarization and mesoderm formation. We show a detailed time course of the spatial expression of two genes involved in the segmentation cascade, hedgehog and even-skipped, and demonstrate two distinct dynamics of the segmentation process.</p><p><strong>Conclusions: </strong>Despite dramatic differences in cell distribution between the blastoderms of many Polyneopteran insects and those of more well-studied developmental models, expression patterns of early patterning genes are mostly similar. Genes associated with axis determination in other insects are activated relatively late and are probably not maternally deposited. The two phases of segmentation-simultaneous and sequential-might indicate a broadly conserved mode of morphological differentiation. The developmental time course we present here should be of value for further investigation into the causes of this distinct blastoderm type.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"14"},"PeriodicalIF":4.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periderm fate and independence of tooth formation are conserved across osteichthyans. 骨鱼类的外皮命运和牙齿形成的独立性是一致的。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-10-03 DOI: 10.1186/s13227-024-00232-4
A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny
{"title":"Periderm fate and independence of tooth formation are conserved across osteichthyans.","authors":"A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny","doi":"10.1186/s13227-024-00232-4","DOIUrl":"10.1186/s13227-024-00232-4","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that periderm (the outer ectodermal layer) in zebrafish partially expands into the mouth and pharyngeal pouches, but does not reach the medial endoderm, where the pharyngeal teeth develop. Instead, periderm-like cells, arising independently from the outer periderm, cover prospective tooth-forming epithelia and are crucial for tooth germ initiation. Here we test the hypothesis that restricted expansion of periderm is a teleost-specific character possibly related to the derived way of early embryonic development. To this end, we performed lineage tracing of the periderm in a non-teleost actinopterygian species possessing pharyngeal teeth, the sterlet sturgeon (Acipenser ruthenus), and a sarcopterygian species lacking pharyngeal teeth, the axolotl (Ambystoma mexicanum).</p><p><strong>Results: </strong>In sturgeon, a stratified ectoderm is firmly established at the end of gastrulation, with minimally a basal ectodermal layer and a surface layer that can be homologized to a periderm. Periderm expands to a limited extent into the mouth and remains restricted to the distal parts of the pouches. It does not reach the medial pharyngeal endoderm, where pharyngeal teeth are located. Thus, periderm in sturgeon covers prospective odontogenic epithelium in the jaw region (oral teeth) but not in the pharyngeal region. In axolotl, like in sturgeon, periderm expansion in the oropharynx is restricted to the distal parts of the opening pouches. Oral teeth in axolotl develop long before mouth opening and possible expansion of the periderm into the mouth cavity.</p><p><strong>Conclusions: </strong>Restricted periderm expansion into the oropharynx appears to be an ancestral feature for osteichthyans, as it is found in sturgeon, zebrafish and axolotl. Periderm behavior does not correlate with presence or absence of oral or pharyngeal teeth, whose induction may depend on 'ectodermalized' endoderm. It is proposed that periderm assists in lumenization of the pouches to create an open gill slit. Comparison of basal and advanced actinopterygians with sarcopterygians (axolotl) shows that different trajectories of embryonic development converge on similar dynamics of the periderm: a restricted expansion into the mouth and prospective gill slits.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"13"},"PeriodicalIF":4.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development. 二态无脊椎动物 Streblospio benedicti 的 Hox 基因表达比较揭示了发育过程中的模式变异。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-09-27 DOI: 10.1186/s13227-024-00231-5
Jose Maria Aguilar-Camacho, Nathan D Harry, Christina Zakas
{"title":"Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development.","authors":"Jose Maria Aguilar-Camacho, Nathan D Harry, Christina Zakas","doi":"10.1186/s13227-024-00231-5","DOIUrl":"10.1186/s13227-024-00231-5","url":null,"abstract":"<p><p>Hox genes are transcriptional regulators that elicit cell positional identity along the anterior-posterior region of the body plan across different lineages of Metazoan. Comparison of Hox gene expression across distinct species reveals their evolutionary conservation; however, their gains and losses in different lineages can correlate with body plan modifications and morphological novelty. We compare the expression of 11 Hox genes found within Streblospio benedicti, a marine annelid that produces two types of offspring with distinct developmental and morphological features. For these two distinct larval types, we compare Hox gene expression through ontogeny using hybridization chain reaction (HCR) probes for in situ hybridization and RNA-seq data. We find that Hox gene expression patterning for both types is typically similar at equivalent developmental stages. However, some Hox genes have spatial or temporal differences between the larval types that are associated with morphological and life-history differences. This is the first comparison of developmental divergence in Hox gene expression within a single species and these changes reveal how body plan differences may arise in larval evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"12"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. 单细胞测序表明刺猬蛋白信号在蜘蛛眼睛发育过程中具有保守功能。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-09-26 DOI: 10.1186/s13227-024-00230-6
Brenda I Medina-Jiménez, Graham E Budd, Matthias Pechmann, Nico Posnien, Ralf Janssen
{"title":"Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development.","authors":"Brenda I Medina-Jiménez, Graham E Budd, Matthias Pechmann, Nico Posnien, Ralf Janssen","doi":"10.1186/s13227-024-00230-6","DOIUrl":"https://doi.org/10.1186/s13227-024-00230-6","url":null,"abstract":"<p><strong>Background: </strong>Spiders evolved different types of eyes, a pair of primary eyes that are usually forward pointing, and three pairs of secondary eyes that are typically situated more posterior and lateral on the spider's head. The best understanding of arthropod eye development comes from the vinegar fly Drosophila melanogaster, the main arthropod model organism, that also evolved different types of eyes, the larval eyes and the ocelli and compound eyes of the imago. The gene regulatory networks that underlie eye development in this species are well investigated revealing a conserved core network, but also show several differences between the different types of eyes. Recent candidate gene approaches identified a number of conserved genes in arthropod eye development, but also revealed crucial differences including the apparent lack of some key factors in some groups of arthropods, including spiders.</p><p><strong>Results: </strong>Here, we re-analysed our published scRNA sequencing data and found potential key regulators of spider eye development that were previously overlooked. Unlike earlier research on this topic, our new data suggest that Hedgehog (Hh)-signalling is involved in eye development in the spider Parasteatoda tepidariorum. By investigating embryonic gene expression in representatives of all main groups of spiders, we demonstrate that this involvement is conserved in spiders. Additionally, we identified genes that are expressed in the developing eyes of spiders, but that have not been studied in this context before.</p><p><strong>Conclusion: </strong>Our data show that single-cell sequencing represents a powerful method to gain deeper insight into gene regulatory networks that underlie the development of lineage-specific organs such as the derived set of eyes in spiders. Overall, we gained deeper insight into spider eye development, as well as the evolution of arthropod visual system formation.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"11"},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信