L Formery, P Peluso, D R Rank, D S Rokhsar, C J Lowe
{"title":"Antero-posterior patterning in the brittle star Amphipholis squamata and the evolution of echinoderm body plans.","authors":"L Formery, P Peluso, D R Rank, D S Rokhsar, C J Lowe","doi":"10.1186/s13227-025-00244-8","DOIUrl":null,"url":null,"abstract":"<p><p>Although the adult pentaradial body plan of echinoderms evolved from a bilateral ancestor, identifying axial homologies between the morphologically divergent echinoderms and their bilaterian relatives has been an enduring problem in zoology. The expression of conserved bilaterian patterning genes in echinoderms provides a molecular framework for resolving this puzzle. Recent studies in juvenile asteroids suggest that the bilaterian antero-posterior axis maps onto the medio-lateral axis of the arms, perpendicular to the proximo-distal axis of each of the five rays of the pentaradial body plan. Here, we test this hypothesis in another echinoderm class, the ophiuroids, using the cosmopolitan brittle star Amphipholis squamata. Our results show that the general principles of axial patterning are similar to those described in asteroids, and comparisons with existing molecular data from other echinoderm taxa support the idea that medio-lateral deployment of the bilaterian AP patterning program across the rays predates the evolution of the asterozoans, and likely the echinoderm crown-group. Our data also reveal expression differences between A. squamata and asteroids, which we attribute to secondary modifications specific to ophiuroids. Together, this work provides important comparative data to reconstruct the evolution of axial properties in echinoderm body plans.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"16 1","pages":"7"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-025-00244-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the adult pentaradial body plan of echinoderms evolved from a bilateral ancestor, identifying axial homologies between the morphologically divergent echinoderms and their bilaterian relatives has been an enduring problem in zoology. The expression of conserved bilaterian patterning genes in echinoderms provides a molecular framework for resolving this puzzle. Recent studies in juvenile asteroids suggest that the bilaterian antero-posterior axis maps onto the medio-lateral axis of the arms, perpendicular to the proximo-distal axis of each of the five rays of the pentaradial body plan. Here, we test this hypothesis in another echinoderm class, the ophiuroids, using the cosmopolitan brittle star Amphipholis squamata. Our results show that the general principles of axial patterning are similar to those described in asteroids, and comparisons with existing molecular data from other echinoderm taxa support the idea that medio-lateral deployment of the bilaterian AP patterning program across the rays predates the evolution of the asterozoans, and likely the echinoderm crown-group. Our data also reveal expression differences between A. squamata and asteroids, which we attribute to secondary modifications specific to ophiuroids. Together, this work provides important comparative data to reconstruct the evolution of axial properties in echinoderm body plans.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology