Sally P Leys, Lauren Grombacher, Daniel Field, Glen R D Elliott, Vanessa R Ho, Amanda S Kahn, Pamela J Reid, Ana Riesgo, Emilio Lanna, Yuriy Bobkov, Joseph F Ryan, April L Horton
{"title":"A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes.","authors":"Sally P Leys, Lauren Grombacher, Daniel Field, Glen R D Elliott, Vanessa R Ho, Amanda S Kahn, Pamela J Reid, Ana Riesgo, Emilio Lanna, Yuriy Bobkov, Joseph F Ryan, April L Horton","doi":"10.1186/s13227-025-00237-7","DOIUrl":null,"url":null,"abstract":"<p><p>How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"16 1","pages":"1"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827373/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-025-00237-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology