Evodevo最新文献

筛选
英文 中文
Early embryonic development of the German cockroach Blattella germanica. 德国小蠊的早期胚胎发育。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-10-26 DOI: 10.1186/s13227-024-00234-2
Ariel Bar-Lev Viterbo, Judith R Wexler, Orel Mayost Lev-Ari, Ariel D Chipman
{"title":"Early embryonic development of the German cockroach Blattella germanica.","authors":"Ariel Bar-Lev Viterbo, Judith R Wexler, Orel Mayost Lev-Ari, Ariel D Chipman","doi":"10.1186/s13227-024-00234-2","DOIUrl":"10.1186/s13227-024-00234-2","url":null,"abstract":"<p><strong>Background: </strong>Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband. We investigated early development in this species in order to understand how early gene expression is or is not conserved in these insect embryos with distinct early cell behaviors.</p><p><strong>Results: </strong>We present a detailed time series of nuclear division and distribution from fertilization through germband formation and report patterns of expression for the early patterning genes hunchback, caudal, and twist in order to understand early polarization and mesoderm formation. We show a detailed time course of the spatial expression of two genes involved in the segmentation cascade, hedgehog and even-skipped, and demonstrate two distinct dynamics of the segmentation process.</p><p><strong>Conclusions: </strong>Despite dramatic differences in cell distribution between the blastoderms of many Polyneopteran insects and those of more well-studied developmental models, expression patterns of early patterning genes are mostly similar. Genes associated with axis determination in other insects are activated relatively late and are probably not maternally deposited. The two phases of segmentation-simultaneous and sequential-might indicate a broadly conserved mode of morphological differentiation. The developmental time course we present here should be of value for further investigation into the causes of this distinct blastoderm type.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"14"},"PeriodicalIF":4.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periderm fate and independence of tooth formation are conserved across osteichthyans. 骨鱼类的外皮命运和牙齿形成的独立性是一致的。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-10-03 DOI: 10.1186/s13227-024-00232-4
A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny
{"title":"Periderm fate and independence of tooth formation are conserved across osteichthyans.","authors":"A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny","doi":"10.1186/s13227-024-00232-4","DOIUrl":"10.1186/s13227-024-00232-4","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that periderm (the outer ectodermal layer) in zebrafish partially expands into the mouth and pharyngeal pouches, but does not reach the medial endoderm, where the pharyngeal teeth develop. Instead, periderm-like cells, arising independently from the outer periderm, cover prospective tooth-forming epithelia and are crucial for tooth germ initiation. Here we test the hypothesis that restricted expansion of periderm is a teleost-specific character possibly related to the derived way of early embryonic development. To this end, we performed lineage tracing of the periderm in a non-teleost actinopterygian species possessing pharyngeal teeth, the sterlet sturgeon (Acipenser ruthenus), and a sarcopterygian species lacking pharyngeal teeth, the axolotl (Ambystoma mexicanum).</p><p><strong>Results: </strong>In sturgeon, a stratified ectoderm is firmly established at the end of gastrulation, with minimally a basal ectodermal layer and a surface layer that can be homologized to a periderm. Periderm expands to a limited extent into the mouth and remains restricted to the distal parts of the pouches. It does not reach the medial pharyngeal endoderm, where pharyngeal teeth are located. Thus, periderm in sturgeon covers prospective odontogenic epithelium in the jaw region (oral teeth) but not in the pharyngeal region. In axolotl, like in sturgeon, periderm expansion in the oropharynx is restricted to the distal parts of the opening pouches. Oral teeth in axolotl develop long before mouth opening and possible expansion of the periderm into the mouth cavity.</p><p><strong>Conclusions: </strong>Restricted periderm expansion into the oropharynx appears to be an ancestral feature for osteichthyans, as it is found in sturgeon, zebrafish and axolotl. Periderm behavior does not correlate with presence or absence of oral or pharyngeal teeth, whose induction may depend on 'ectodermalized' endoderm. It is proposed that periderm assists in lumenization of the pouches to create an open gill slit. Comparison of basal and advanced actinopterygians with sarcopterygians (axolotl) shows that different trajectories of embryonic development converge on similar dynamics of the periderm: a restricted expansion into the mouth and prospective gill slits.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"13"},"PeriodicalIF":4.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development. 二态无脊椎动物 Streblospio benedicti 的 Hox 基因表达比较揭示了发育过程中的模式变异。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-09-27 DOI: 10.1186/s13227-024-00231-5
Jose Maria Aguilar-Camacho, Nathan D Harry, Christina Zakas
{"title":"Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development.","authors":"Jose Maria Aguilar-Camacho, Nathan D Harry, Christina Zakas","doi":"10.1186/s13227-024-00231-5","DOIUrl":"10.1186/s13227-024-00231-5","url":null,"abstract":"<p><p>Hox genes are transcriptional regulators that elicit cell positional identity along the anterior-posterior region of the body plan across different lineages of Metazoan. Comparison of Hox gene expression across distinct species reveals their evolutionary conservation; however, their gains and losses in different lineages can correlate with body plan modifications and morphological novelty. We compare the expression of 11 Hox genes found within Streblospio benedicti, a marine annelid that produces two types of offspring with distinct developmental and morphological features. For these two distinct larval types, we compare Hox gene expression through ontogeny using hybridization chain reaction (HCR) probes for in situ hybridization and RNA-seq data. We find that Hox gene expression patterning for both types is typically similar at equivalent developmental stages. However, some Hox genes have spatial or temporal differences between the larval types that are associated with morphological and life-history differences. This is the first comparison of developmental divergence in Hox gene expression within a single species and these changes reveal how body plan differences may arise in larval evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"12"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. 单细胞测序表明刺猬蛋白信号在蜘蛛眼睛发育过程中具有保守功能。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-09-26 DOI: 10.1186/s13227-024-00230-6
Brenda I Medina-Jiménez, Graham E Budd, Matthias Pechmann, Nico Posnien, Ralf Janssen
{"title":"Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development.","authors":"Brenda I Medina-Jiménez, Graham E Budd, Matthias Pechmann, Nico Posnien, Ralf Janssen","doi":"10.1186/s13227-024-00230-6","DOIUrl":"https://doi.org/10.1186/s13227-024-00230-6","url":null,"abstract":"<p><strong>Background: </strong>Spiders evolved different types of eyes, a pair of primary eyes that are usually forward pointing, and three pairs of secondary eyes that are typically situated more posterior and lateral on the spider's head. The best understanding of arthropod eye development comes from the vinegar fly Drosophila melanogaster, the main arthropod model organism, that also evolved different types of eyes, the larval eyes and the ocelli and compound eyes of the imago. The gene regulatory networks that underlie eye development in this species are well investigated revealing a conserved core network, but also show several differences between the different types of eyes. Recent candidate gene approaches identified a number of conserved genes in arthropod eye development, but also revealed crucial differences including the apparent lack of some key factors in some groups of arthropods, including spiders.</p><p><strong>Results: </strong>Here, we re-analysed our published scRNA sequencing data and found potential key regulators of spider eye development that were previously overlooked. Unlike earlier research on this topic, our new data suggest that Hedgehog (Hh)-signalling is involved in eye development in the spider Parasteatoda tepidariorum. By investigating embryonic gene expression in representatives of all main groups of spiders, we demonstrate that this involvement is conserved in spiders. Additionally, we identified genes that are expressed in the developing eyes of spiders, but that have not been studied in this context before.</p><p><strong>Conclusion: </strong>Our data show that single-cell sequencing represents a powerful method to gain deeper insight into gene regulatory networks that underlie the development of lineage-specific organs such as the derived set of eyes in spiders. Overall, we gained deeper insight into spider eye development, as well as the evolution of arthropod visual system formation.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"11"},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis. 棘皮动物骨骼形成过程中非基因组甲状腺激素信号的共同调控功能
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-08-07 DOI: 10.1186/s13227-024-00226-2
Elias Taylor, Megan Corsini, Andreas Heyland
{"title":"Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.","authors":"Elias Taylor, Megan Corsini, Andreas Heyland","doi":"10.1186/s13227-024-00226-2","DOIUrl":"10.1186/s13227-024-00226-2","url":null,"abstract":"<p><p>Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida). We demonstrate dramatic acceleration of skeletogenesis after TH treatment in three classes of echinoderms: sea urchins, sea stars, and brittle stars (echinoids, asteroids, and ophiuroids). Fluorescently labeled thyroid hormone analogues reveal thyroid hormone binding to cells proximal to regions of skeletogenesis in the gut and juvenile rudiment. We also identify, for the first time, a potential source of thyroxine during gastrulation in sea urchin embryos. Thyroxine-positive cells are present in tip of the archenteron. In addition, we detect thyroid hormone binding to the cell membrane and nucleus during metamorphic development in echinoderms. Immunohistochemistry of phosphorylated MAPK in the presence and absence of TH-binding inhibitors suggests that THs may act via phosphorylation of MAPK (ERK1/2) to accelerate initiation of skeletogenesis in the three echinoderm groups. Together, these results indicate that TH regulation of mesenchyme cell activity via integrin-mediated MAPK signaling may be a conserved mechanism for the regulation of skeletogenesis in echinoderm development. In addition, TH action via a nuclear thyroid hormone receptor may regulate metamorphic development. Our findings shed light on potentially ancient pathways of thyroid hormone activity in echinoids, ophiuroids, and asteroids, or on a signaling system that has been repeatedly co-opted to coordinate metamorphic development in bilaterians.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"10"},"PeriodicalIF":4.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparisons of developmental processes of air-breathing organs among terrestrial isopods (Crustacea, Oniscidea): implications for their evolutionary origins. 陆生等脚类动物(甲壳纲,Oniscidea)呼吸空气器官发育过程的比较:对其进化起源的影响。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-07-18 DOI: 10.1186/s13227-024-00229-z
Naoto Inui, Toru Miura
{"title":"Comparisons of developmental processes of air-breathing organs among terrestrial isopods (Crustacea, Oniscidea): implications for their evolutionary origins.","authors":"Naoto Inui, Toru Miura","doi":"10.1186/s13227-024-00229-z","DOIUrl":"10.1186/s13227-024-00229-z","url":null,"abstract":"<p><strong>Background: </strong>The acquisition of air-breathing organs is one of the key innovations for terrestrialization in animals. Terrestrial isopods, a crustacean lineage, can be interesting models to study the evolution of respiratory organs, as they exhibit varieties of air-breathing structures according to their habitats. However, the evolutionary processes and origins of these structures are unclear, due to the lack of information about their developmental processes. To understand the developmental mechanisms, we compared the developmental processes forming different respiratory structures in three isopod species, i.e., 'uncovered lungs' in Nagurus okinawaensis (Trachelipodidae), 'dorsal respiratory fields' in Alloniscus balssi (Alloniscidae), and pleopods without respiratory structures in Armadilloniscus cf. ellipticus (Detonidae).</p><p><strong>Results: </strong>In N. okinawaensis with uncovered lungs, epithelium and cuticle around the proximal hemolymph sinus developed into respiratory structures at post-manca juvenile stages. On the other hand, in Al. balssi with dorsal respiratory fields, the region for the future respiratory structure was already present at manca 1 stage, immediately after hatching, where the lateral protrusion of ventral epithelium occurred, forming the respiratory structure. Furthermore, on pleopods in Ar. cf. ellipticus, only thickened dorsal cuticle and the proximal hemolymph sinus developed during postembryonic development without special morphogenesis.</p><p><strong>Conclusions: </strong>This study shows that the respiratory structures in terrestrial isopods develop primarily by postembryonic epithelial modifications, but the epithelial positions developing into respiratory structures differ between uncovered lungs and dorsal respiratory fields. This suggests that these two types of respiratory structures do not result from simple differences in the degree of development. Future analysis of molecular developmental mechanisms will help determine whether these are the result of heterotopic changes or have different evolutionary origins. Overall, this study provides fundamental information for evolutionary developmental studies of isopod respiratory organs.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"9"},"PeriodicalIF":4.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
See-Star: a versatile hydrogel-based protocol for clearing large, opaque and calcified marine invertebrates. See-Star:一种基于水凝胶的多功能方案,用于清除大型、不透明和钙化的海洋无脊椎动物。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-06-25 DOI: 10.1186/s13227-024-00228-0
D N Clarke, L Formery, C J Lowe
{"title":"See-Star: a versatile hydrogel-based protocol for clearing large, opaque and calcified marine invertebrates.","authors":"D N Clarke, L Formery, C J Lowe","doi":"10.1186/s13227-024-00228-0","DOIUrl":"10.1186/s13227-024-00228-0","url":null,"abstract":"<p><p>Studies of morphology and developmental patterning in adult stages of many invertebrates are hindered by opaque structures, such as shells, skeletal elements, and pigment granules that block or refract light and necessitate sectioning for observation of internal features. An inherent challenge in studies relying on surgical approaches is that cutting tissue is semi-destructive, and delicate structures, such as axonal processes within neural networks, are computationally challenging to reconstruct once disrupted. To address this problem, we developed See-Star, a hydrogel-based tissue clearing protocol to render the bodies of opaque and calcified invertebrates optically transparent while preserving their anatomy in an unperturbed state, facilitating molecular labeling and observation of intact organ systems. The resulting protocol can clear large (> 1 cm<sup>3</sup>) specimens to enable deep-tissue imaging, and is compatible with molecular techniques, such as immunohistochemistry and in situ hybridization to visualize protein and mRNA localization. To test the utility of this method, we performed a whole-mount imaging study of intact nervous systems in juvenile echinoderms and molluscs and demonstrate that See-Star allows for comparative studies to be extended far into development, facilitating insights into the anatomy of juveniles and adults that are usually not amenable to whole-mount imaging.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"8"},"PeriodicalIF":4.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hooked on zombie worms? Genetic blueprints of bristle formation in Osedax japonicus (Annelida). 迷上僵尸蠕虫?日本疣鼻虫(Osedax japonicus)鬃毛形成的遗传蓝图。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-06-04 DOI: 10.1186/s13227-024-00227-1
Ekin Tilic, Norio Miyamoto, Maria Herranz, Katrine Worsaae
{"title":"Hooked on zombie worms? Genetic blueprints of bristle formation in Osedax japonicus (Annelida).","authors":"Ekin Tilic, Norio Miyamoto, Maria Herranz, Katrine Worsaae","doi":"10.1186/s13227-024-00227-1","DOIUrl":"10.1186/s13227-024-00227-1","url":null,"abstract":"<p><strong>Background: </strong>This study sheds light on the genetic blueprints of chaetogenesis (bristle formation), a complex biomineralization process essential not only for the diverse group of bristle worms (annelids) but also for other spiralians. We explore the complex genetic mechanisms behind chaetae formation in Osedax japonicus, the bone-devouring deep-sea worm known for its unique ecological niche and morphological adaptations.</p><p><strong>Results: </strong>We characterized the chaetal structure and musculature using electron microscopy and immunohistochemistry, and combined RNAseq of larval stages with in-situ hybridization chain reaction (HCR) to reveal gene expression patterns integral to chaetogenesis. Our findings pinpoint a distinct surge in gene expression during the larval stage of active chaetogenesis, identifying specific genes and cells involved.</p><p><strong>Conclusions: </strong>Our research underscores the value of studying on non-model, \"aberrant\" organisms like Osedax, whose unique, temporally restricted chaetogenesis provided insights into elevated gene expression across specific larval stages and led to the identification of genes critical for chaetae formation. The genes identified as directly involved in chaetogenesis lay the groundwork for future comparative studies across Annelida and Spiralia, potentially elucidating the homology of chaetae-like chitinous structures and their evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"7"},"PeriodicalIF":4.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of staminodes in Aquilegia jonesii reveals a fading stamen–staminode boundary Aquilegia jonesii 退化雄蕊的丧失揭示了雄蕊-退化雄蕊边界的消逝
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-05-25 DOI: 10.1186/s13227-024-00225-3
Jason W. Johns, Ya Min, Evangeline S. Ballerini, Elena M. Kramer, Scott A. Hodges
{"title":"Loss of staminodes in Aquilegia jonesii reveals a fading stamen–staminode boundary","authors":"Jason W. Johns, Ya Min, Evangeline S. Ballerini, Elena M. Kramer, Scott A. Hodges","doi":"10.1186/s13227-024-00225-3","DOIUrl":"https://doi.org/10.1186/s13227-024-00225-3","url":null,"abstract":"The modification of fertile stamens into sterile staminodes has occurred independently many times in the flowering plant lineage. In the genus Aquilegia (columbine) and its closest relatives, the two stamen whorls closest to the carpels have been converted to staminodes. In Aquilegia, the only genetic analyses of staminode development have been reverse genetic approaches revealing that B-class floral identity genes are involved. A. jonesii, the only species of columbine where staminodes have reverted to fertile stamens, allows us to explore the genetic architecture of staminode development using a forward genetic approach. We performed QTL analysis using an outcrossed F2 population between A. jonesii and a horticultural variety that makes fully developed staminodes, A. coerulea ‘Origami’. Our results reveal a polygenic basis for staminode loss where the two staminode whorls are under some level of independent control. We also discovered that staminode loss in A. jonesii is not complete, in which staminode-like traits sometimes occur in the inner fertile stamens, potentially representing a fading boundary of gene expression. The QTLs identified in this study provide a map to guide future reverse genetic and functional studies examining the genetic basis and evolutionary significance of this trait.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"19 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. 单细胞分辨率的蜘蛛发育图谱为节肢动物胚胎发育提供了新的视角。
IF 4.1 2区 生物学
Evodevo Pub Date : 2024-05-10 DOI: 10.1186/s13227-024-00224-4
Daniel J Leite, Anna Schönauer, Grace Blakeley, Amber Harper, Helena Garcia-Castro, Luis Baudouin-Gonzalez, Ruixun Wang, Naïra Sarkis, Alexander Günther Nikola, Venkata Sai Poojitha Koka, Nathan J Kenny, Natascha Turetzek, Matthias Pechmann, Jordi Solana, Alistair P McGregor
{"title":"An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis.","authors":"Daniel J Leite, Anna Schönauer, Grace Blakeley, Amber Harper, Helena Garcia-Castro, Luis Baudouin-Gonzalez, Ruixun Wang, Naïra Sarkis, Alexander Günther Nikola, Venkata Sai Poojitha Koka, Nathan J Kenny, Natascha Turetzek, Matthias Pechmann, Jordi Solana, Alistair P McGregor","doi":"10.1186/s13227-024-00224-4","DOIUrl":"10.1186/s13227-024-00224-4","url":null,"abstract":"<p><p>Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"5"},"PeriodicalIF":4.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信