{"title":"螯合 Wnt 基因表达图谱:节肢动物 Wnt 模式复杂性的新见解。","authors":"Ralf Janssen, Matthias Pechmann, Natascha Turetzek","doi":"10.1186/s13227-021-00182-1","DOIUrl":null,"url":null,"abstract":"<p><p>The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579682/pdf/","citationCount":"0","resultStr":"{\"title\":\"A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning.\",\"authors\":\"Ralf Janssen, Matthias Pechmann, Natascha Turetzek\",\"doi\":\"10.1186/s13227-021-00182-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.</p>\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-021-00182-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-021-00182-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning.
The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology