PLoS Genetics最新文献

筛选
英文 中文
Local genetic covariance analysis with lipid traits identifies novel loci for early-onset Alzheimer's Disease.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-17 DOI: 10.1371/journal.pgen.1011631
Nicholas R Ray, Joseph Bradley, Elanur Yilmaz, Caghan Kizil, Jiji T Kurup, Eden R Martin, Hans-Ulrich Klein, Brian W Kunkle, David A Bennett, Philip L De Jager, Gary W Beecham, Carlos Cruchaga, Christiane Reitz
{"title":"Local genetic covariance analysis with lipid traits identifies novel loci for early-onset Alzheimer's Disease.","authors":"Nicholas R Ray, Joseph Bradley, Elanur Yilmaz, Caghan Kizil, Jiji T Kurup, Eden R Martin, Hans-Ulrich Klein, Brian W Kunkle, David A Bennett, Philip L De Jager, Gary W Beecham, Carlos Cruchaga, Christiane Reitz","doi":"10.1371/journal.pgen.1011631","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011631","url":null,"abstract":"<p><p>The genetic component of early-onset Alzheimer disease (EOAD), accounting for ~10% of all Alzheimer's disease (AD) cases, is largely unexplained. Recent studies suggest that EOAD may be enriched for variants acting in the lipid pathway. The current study examines the shared genetic heritability between EOAD and the lipid pathway using genome-wide multi-trait genetic covariance analyses. Summary statistics were obtained from the GWAS meta-analyses of EOAD by the Alzheimer's Disease Genetics Consortium (n=19,668) and five blood lipid traits by the Global Lipids Genetics Consortium (n=1,320,016). The significant results were compared between the EOAD and lipids GWAS and genetic covariance analyses were performed via SUPERGNOVA. Genes in linkage disequilibrium (LD) with top EOAD hits in identified regions of covariance with lipid traits were scored and ranked for causality by combining evidence from gene-based analysis, AD-risk scores incorporating transcriptomic and proteomic evidence, eQTL data, eQTL colocalization analyses, DNA methylation data, and single-cell RNA sequencing analyses. Direct comparison of GWAS results showed 5 loci overlapping between EOAD and at least one lipid trait harboring APOE, TREM2, MS4A4E, LILRA5, and LRRC25. Local genetic covariance analyses identified 3 regions of covariance between EOAD and at least one lipid trait. Gene prioritization nominated 3 likely causative genes at these loci: ANKDD1B, CUZD1, and MS4A64.The current study identified genetic covariance between EOAD and lipids, providing further evidence of shared genetic architecture and mechanistic pathways between the two traits.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011631"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-17 DOI: 10.1371/journal.pgen.1011457
Katherine C Lo, Christian P Petersen
{"title":"map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration.","authors":"Katherine C Lo, Christian P Petersen","doi":"10.1371/journal.pgen.1011457","DOIUrl":"10.1371/journal.pgen.1011457","url":null,"abstract":"<p><p>Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like wnt11-6/wntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Consistent with these results, eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. map3k1(RNAi) ectopic eyes emerged in the regions normally occupied by migratory eye progenitors, and these animals produced a net excess of differentiated eye cells. Furthermore, the formation of ectopic eyes after map3k1 inhibition coincided with an increase to numbers of differentiated eye cells, a decrease in numbers of ovo+ eye progenitors, and also was preceded by eye progenitors prematurely expressing opsin/tyosinase markers of eye cell terminal differentiation. Therefore, map3k1 negatively regulates the process of terminal differentiation within the eye lineage. Similar ectopic eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011457"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical functions and key interactions mediated by the RNase E scaffolding domain in Pseudomonas aeruginosa.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-17 DOI: 10.1371/journal.pgen.1011618
Sandra Amandine Marie Geslain, Stéphane Hausmann, Johan Geiser, George Edward Allen, Diego Gonzalez, Martina Valentini
{"title":"Critical functions and key interactions mediated by the RNase E scaffolding domain in Pseudomonas aeruginosa.","authors":"Sandra Amandine Marie Geslain, Stéphane Hausmann, Johan Geiser, George Edward Allen, Diego Gonzalez, Martina Valentini","doi":"10.1371/journal.pgen.1011618","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011618","url":null,"abstract":"<p><p>The RNA degradosome is a bacterial multi-protein complex mediating mRNA processing and degradation. In Pseudomonadota, this complex assembles on the C-terminal domain (CTD) of RNase E through short linear motifs (SLiMs) that determine its composition and functionality. In the human pathogen Pseudomonas aeruginosa, the RNase E CTD exhibits limited similarity to that of model organisms, impeding our understanding of RNA metabolic processes in this bacterium. Our study systematically maps the interactions mediated by the P. aeruginosa RNase E CTD and highlights its critical role in transcript regulation and cellular functions. We identified the SLiMs crucial for membrane attachment, RNA binding and complex clustering, as well as for direct binding to the core components PNPase and RhlB. Transcriptome analyses of RNase E CTD mutants revealed altered expression of genes involved in quorum sensing, type III secretion, and amino acid metabolism. Additionally, we show that the mutants are impaired in cold adaptation, pH response, and virulence in an infection model. Overall, this work establishes the essential role of the RNA degradosome in driving bacterial adaptability and pathogenicity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011618"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-11 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011205
Hannah J T Nonarath, Samantha L Simpson, Tricia L Slobodianuk, Hai Tran, Ross F Collery, Astra Dinculescu, Brian A Link
{"title":"The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors.","authors":"Hannah J T Nonarath, Samantha L Simpson, Tricia L Slobodianuk, Hai Tran, Ross F Collery, Astra Dinculescu, Brian A Link","doi":"10.1371/journal.pgen.1011205","DOIUrl":"10.1371/journal.pgen.1011205","url":null,"abstract":"<p><p>Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. The retinas of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not reduce the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011205"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haplotype-based analysis distinguishes maternal-fetal genetic contribution to pregnancy-related outcomes.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-10 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011575
Amit K Srivastava, Julius Juodakis, Pol Sole-Navais, Jing Chen, Jonas Bacelis, Kari Teramo, Mikko Hallman, Pal R Njølstad, David M Evans, Bo Jacobsson, Louis J Muglia, Ge Zhang
{"title":"Haplotype-based analysis distinguishes maternal-fetal genetic contribution to pregnancy-related outcomes.","authors":"Amit K Srivastava, Julius Juodakis, Pol Sole-Navais, Jing Chen, Jonas Bacelis, Kari Teramo, Mikko Hallman, Pal R Njølstad, David M Evans, Bo Jacobsson, Louis J Muglia, Ge Zhang","doi":"10.1371/journal.pgen.1011575","DOIUrl":"10.1371/journal.pgen.1011575","url":null,"abstract":"<p><p>Genotype-based approaches for the estimation of SNP-based narrow-sense heritability ([Formula: see text]) have limited utility in pregnancy-related outcomes due to confounding by the shared alleles between mother and child. Here, we propose a haplotype-based approach to estimate the genetic variance attributable to three haplotypes - maternal transmitted ([Formula: see text]), maternal non-transmitted ([Formula: see text]) and paternal transmitted ([Formula: see text]) in mother-child pairs. We show through extensive simulations that our haplotype-based approach outperforms the conventional and contemporary approaches for resolving the contribution of maternal and fetal effects, particularly when m1 and p1 have different effects in the offspring. We apply this approach to estimate the explicit and relative maternal-fetal genetic contribution to the phenotypic variance of gestational duration and gestational duration-adjusted fetal size measurements at birth in 10,375 mother-child pairs. The results reveal that variance of gestational duration is mainly attributable to m1 and m2 ([Formula: see text]). In contrast, variance of fetal size measurements at birth are mainly attributable to m1 and p1 ([Formula: see text]). Our results suggest that gestational duration and fetal size measurements are primarily genetically determined by the maternal and fetal genomes, respectively. In addition, a greater contribution of m1 as compared to m2 and p1 ([Formula: see text]) to birth length and head circumference suggests a substantial influence of correlated maternal-fetal genetic effects on these traits. Our newly developed approach provides a direct and robust alternative for resolving explicit maternal and fetal genetic contributions to the phenotypic variance of pregnancy-related outcomes.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011575"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fission yeast Caprin protein is required for efficient heterochromatin establishment.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-10 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011620
Haidao Zhang, Ekaterina Kapitonova, Adriana Orrego, Christos Spanos, Joanna Strachan, Elizabeth H Bayne
{"title":"Fission yeast Caprin protein is required for efficient heterochromatin establishment.","authors":"Haidao Zhang, Ekaterina Kapitonova, Adriana Orrego, Christos Spanos, Joanna Strachan, Elizabeth H Bayne","doi":"10.1371/journal.pgen.1011620","DOIUrl":"10.1371/journal.pgen.1011620","url":null,"abstract":"<p><p>Heterochromatin is a key feature of eukaryotic genomes that serves important regulatory and structural roles in regions such as centromeres. In fission yeast, maintenance of existing heterochromatic domains relies on positive feedback loops involving histone methylation and non-coding RNAs. However, requirements for de novo establishment of heterochromatin are less well understood. Here, through a cross-based assay we have identified a novel factor influencing the efficiency of heterochromatin establishment. We determine that the previously uncharacterised protein is an ortholog of human Caprin1, an RNA-binding protein linked to stress granule formation. We confirm that the fission yeast ortholog, here named Cpn1, also associates with stress granules, and we uncover evidence of interplay between heterochromatin integrity and ribonucleoprotein (RNP) granule formation, with heterochromatin mutants showing reduced granule formation in the presence of stress, but increased granule formation in the absence of stress. We link this to regulation of non-coding heterochromatic transcripts, since in heterochromatin-deficient cells, Cpn1 can be seen to colocalise with accumulating pericentromeric transcripts, and absence of Cpn1 leads to hyperaccumulation of these RNAs at centromeres. Together, our findings unveil a novel link between RNP homeostasis and heterochromatin assembly, and implicate Cpn1 and associated factors in facilitating efficient heterochromatin establishment by enabling removal of excess transcripts that would otherwise impair assembly processes.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011620"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of X chromosome hyper-expression and inactivation in male tissues during stick insect development.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-10 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011615
Jelisaveta Djordjevic, Patrick Tran Van, William Toubiana, Marjorie Labédan, Zoé Dumas, Jean-Marc Aury, Corinne Cruaud, Benjamin Istace, Karine Labadie, Benjamin Noel, Darren J Parker, Tanja Schwander
{"title":"Dynamics of X chromosome hyper-expression and inactivation in male tissues during stick insect development.","authors":"Jelisaveta Djordjevic, Patrick Tran Van, William Toubiana, Marjorie Labédan, Zoé Dumas, Jean-Marc Aury, Corinne Cruaud, Benjamin Istace, Karine Labadie, Benjamin Noel, Darren J Parker, Tanja Schwander","doi":"10.1371/journal.pgen.1011615","DOIUrl":"10.1371/journal.pgen.1011615","url":null,"abstract":"<p><p>Differentiated sex chromosomes are frequently associated with major transcriptional changes: the evolution of dosage compensation (DC) to equalize gene expression between the sexes and the establishment of meiotic sex chromosome inactivation (MSCI). Our study investigates the mechanisms and developmental dynamics of dosage compensation and meiotic sex chromosome inactivation in the stick insect species T. poppense. Stick insects are characterized by XX/X0 sex determination, with an X chromosome that likely evolved prior to the diversification of insects over 450 Mya. We generated a chromosome-level genome assembly and analyzed gene expression from various tissues (brain, gut, antennae, leg, and reproductive tract) across developmental stages in both sexes. Our results show that complete dosage compensation is maintained in male somatic tissues throughout development, mediated by upregulation of the single X chromosome. Contrarily, in male reproductive tissues, dosage compensation is present only in the early nymphal stages. As males reach the 4th nymphal stage and adulthood, X-linked gene expression diminishes, coinciding with the onset of meiosis and MSCI, which involves classical silencing histone modifications. These findings reveal the dynamic regulation of X-linked gene expression in T. poppense, and suggest that reduced X-expression in insect testes is generally driven by MSCI rather than an absence of dosage compensation mechanisms. Our work provides critical insights into sex chromosome evolution and the complex interplay of dosage compensation and MSCI across tissues and developmental stages.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011615"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-07 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011610
Anthony M Martini, Sara A Alexander, Anupama Khare
{"title":"Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial.","authors":"Anthony M Martini, Sara A Alexander, Anupama Khare","doi":"10.1371/journal.pgen.1011610","DOIUrl":"10.1371/journal.pgen.1011610","url":null,"abstract":"<p><p>Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011610"},"PeriodicalIF":4.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel role for Friend of GATA1 (FOG-1) in regulating cholesterol transport in murine erythropoiesis.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-06 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011617
Ioannis-Marios Roussis, David J Pearton, Umar Niazi, Grigorios Tsaknakis, Giorgio L Papadopoulos, Riley Cook, Mansoor Saqi, Jiannis Ragoussis, John Strouboulis
{"title":"A novel role for Friend of GATA1 (FOG-1) in regulating cholesterol transport in murine erythropoiesis.","authors":"Ioannis-Marios Roussis, David J Pearton, Umar Niazi, Grigorios Tsaknakis, Giorgio L Papadopoulos, Riley Cook, Mansoor Saqi, Jiannis Ragoussis, John Strouboulis","doi":"10.1371/journal.pgen.1011617","DOIUrl":"10.1371/journal.pgen.1011617","url":null,"abstract":"<p><p>Friend of GATA1 (FOG-1) is an essential transcriptional co-factor of the master erythroid transcription factor GATA1. The knockout of the Zfpm1 gene, coding for FOG-1, results in early embryonic lethality due to anemia in mice, similar to the embryonic lethal phenotype of the Gata1 gene knockout. However, a detailed molecular analysis of the Zfpm1 knockout phenotype in erythropoiesis is presently incomplete. To this end, we used CRISPR/Cas9 to knockout Zfpm1 in mouse erythroleukemic (MEL) cells. Phenotypic characterization of DMSO-induced terminal erythroid differentiation showed that the Zfpm1 knockout MEL cells did not progress past the proerythroblast stage of differentiation. Expression profiling of the Zfpm1 knockout MEL cells by RNAseq showed a lack of up-regulation of erythroid-related gene expression profiles. Bioinformatic analysis highlighted cholesterol transport as a pathway affected in the Zfpm1 knockout cells. Moreover, we show that the cholesterol transporters Abca1 and Ldlr fail to be repressed during erythroid differentiation in Zfpm1 knockout cells, resulting in higher intracellular lipid levels and higher membrane fluidity. We also show that in FOG-1 knockout cells, the nuclear levels of SREBP2, a key transcriptional regulator of cholesterol biosynthesis and transport, are markedly increased. On the basis of these findings we propose that FOG-1 (and, potentially, GATA1) regulate cholesterol homeostasis during erythroid differentiation directly through the down regulation of cholesterol transport genes and indirectly, through the repression of the SREBP2 transcriptional activator of cholesterol homeostasis. Taken together, our work provides a molecular basis for understanding FOG-1 functions in erythropoiesis and reveals a novel role for FOG-1 in cholesterol transport.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011617"},"PeriodicalIF":4.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species-specific circular RNA circDS-1 enhances adaptive evolution in Talaromyces marneffei through regulation of dimorphic transition.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2025-03-06 eCollection Date: 2025-03-01 DOI: 10.1371/journal.pgen.1011482
Xueyan Hu, Minghao Du, Changyu Tao, Juan Wang, Yun Zhang, Yueqi Jin, Ence Yang
{"title":"Species-specific circular RNA circDS-1 enhances adaptive evolution in Talaromyces marneffei through regulation of dimorphic transition.","authors":"Xueyan Hu, Minghao Du, Changyu Tao, Juan Wang, Yun Zhang, Yueqi Jin, Ence Yang","doi":"10.1371/journal.pgen.1011482","DOIUrl":"10.1371/journal.pgen.1011482","url":null,"abstract":"<p><p>Thermal adaptability is a crucial characteristic for mammalian pathogenic fungi that originally inhabit natural ecosystems. Thermally dimorphic fungi have evolved a unique ability to respond to host body temperature by shifting from mycelia to yeast. The high similarity of protein-coding genes between these fungi and their relatives suggests the indispensable but often overlooked roles of non-coding elements in fungal thermal adaptation. Here, we systematically delineated the landscape of full-length circRNAs in both mycelial and yeast conditions of Talaromyces marneffei, a typical thermally dimorphic fungus causing fatal Talaromycosis, by optimizing an integrative pipeline for circRNA detection utilizing next- and third-generation sequencing. We found T. marneffei circRNA demonstrated features such as shorter length, lower abundance, and circularization-biased splicing. We then identified and validated that circDS-1, independent of its parental gene, promotes the hyphae-to-yeast transition, maintains yeast morphology, and is involved in virulence regulation. Further analysis and experiments among Talaromyces confirmed that the generation of circDS-1 is driven by a T. marneffei-specific region in the flanking intron of circDS-1. Together, our findings not only provide fresh insights into the role of circRNA in fungal thermal adaptation but also reveal a novel molecular mechanism for the adaptive evolution of functional circRNAs derived from intronic mutations.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011482"},"PeriodicalIF":4.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信