PLoS Genetics最新文献

筛选
英文 中文
A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust. 高分辨率单倍型收集揭示了燕麦冠锈病的体细胞杂交、重组和洲际移动。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-21 DOI: 10.1371/journal.pgen.1011493
Eva C Henningsen, David Lewis, Eric S Nazareno, Hayley Mangelson, Monica Sanchez, Kyle Langford, Yung-Fen Huang, Brian J Steffenson, Brendan Boesen, Shahryar F Kianian, Ivan Liachko, Eric Stone, Peter N Dodds, Jana Sperschneider, Melania Figueroa
{"title":"A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust.","authors":"Eva C Henningsen, David Lewis, Eric S Nazareno, Hayley Mangelson, Monica Sanchez, Kyle Langford, Yung-Fen Huang, Brian J Steffenson, Brendan Boesen, Shahryar F Kianian, Ivan Liachko, Eric Stone, Peter N Dodds, Jana Sperschneider, Melania Figueroa","doi":"10.1371/journal.pgen.1011493","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011493","url":null,"abstract":"<p><p>The population structure and evolution of basidiomycetes like rust fungi are influenced by complex reproductive cycles and dikaryotic life stages where two independent nuclear haplotypes are present in the cell. The ability to alternate between asexual (clonal) and sexual reproduction increases the evolutionary capacity in these species. Furthermore, exchange of intact nuclei (somatic hybridization) in rust fungi can allow for rapid generation of genetic variability outside of the sexual cycle. Puccinia coronata f. sp. avenae (Pca), the causal agent of oat crown rust, is a pathogen of global economic importance that is difficult to control due to rapid breakdown of host genetic resistance. The contribution of sexuality, clonality, and migration to virulence evolution varies across Pca populations. As such, the Pca pathosystem is ideal to address the role of mating type, recombination, mutation, and somatic hybridization in host adaptation. We expanded the existing resources for USA and South African populations by generating whole genome sequencing data of Taiwanese and Australian isolates. An atlas of 30 chromosome-level, fully-phased nuclear haplotypes from six USA isolates and nine Australian isolates was created to capture the genomic composition of key Pca lineages. At the haplotype level, we confirmed previous reports of genetic recombination in the USA population and additionally detected either sexual or cryptic recombination between Australian isolates, contrasting previous evaluations that suggested Pca populations in Australia to be purely clonal. We also identified somatic hybridization events in Pca that are not only associated with significant changes in fitness but also imply intercontinental migration of haplotypes, which provides further impetus for molecular monitoring of rust pathogen populations on a global scale.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011493"},"PeriodicalIF":4.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein phosphatase 1 catalytic subunit gamma is a causative gene for meat lightness and redness. 蛋白磷酸酶 1 催化亚基 gamma 是导致肉质发亮和发红的致病基因。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-20 DOI: 10.1371/journal.pgen.1011467
Jiahong Sun, Xinting Yang, Guiping Zhao, Zhengxiao He, Wenhao Xing, Yanru Chen, Xiaodong Tan, Mengjie Wang, Wei Li, Bingxing An, Zhangyuan Pan, Zhengkui Zhou, Jie Wen, Ranran Liu
{"title":"Protein phosphatase 1 catalytic subunit gamma is a causative gene for meat lightness and redness.","authors":"Jiahong Sun, Xinting Yang, Guiping Zhao, Zhengxiao He, Wenhao Xing, Yanru Chen, Xiaodong Tan, Mengjie Wang, Wei Li, Bingxing An, Zhangyuan Pan, Zhengkui Zhou, Jie Wen, Ranran Liu","doi":"10.1371/journal.pgen.1011467","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011467","url":null,"abstract":"<p><p>The quality of meat is important to the consumer. Color is a primary indicator of meat quality and is characterized mainly into lightness, redness, and yellowness. Here, we used the genome-wide association study (GWAS) and gene-based association analysis with whole-genome resequencing of 230 fast-growing white-feathered chickens to map genes related to meat lightness and redness to a 6.24 kb QTL region (Chr15: 6298.34-6304.58 kb). This analysis revealed that only the protein phosphatase 1 catalytic subunit gamma (PPP1CC) was associated with meat color (P = 8.65E-08). The causal relationships between PPP1CC expression and meat lightness/redness were further validated through Mendelian randomization analyses (P < 2.9E-12). Inducible skeletal muscle-specific PPP1CC knockout (PPP1CC-SSKO) mice were generated and these mice showed increased lightness and decreased myoglobin content in the limb muscles. In addition, the predominant myofiber shifted from slow-twitch to fast-twitch myofibers. Through transcriptome and targeted metabolome evidence, we found that inhibition of PPP1CC decreased the expression of typical slow-twitch myofiber and myofiber-type specification genes and enhanced the glycolysis pathway. Functional validation through a plasmid reporter assay revealed that a SNP (rs315520807, C > T) located in the intron of PPP1CC could regulate the gene transcription activity. The differences in meat color phenotypes, myoglobin content, frequency of rs315520807 variant, expression of PPP1CC and fast-twitch fiber marker genes were detected between fast-growing white-feathered chickens and local chickens. In this study, PPP1CC was identified as the causative gene for meat color, and the novel target gene and variant that can aid in the innovation of meat improvement technology were detected.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011467"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia. 利用大规模基因组联盟中的高维 omics 中介因子对总中介效应进行元分析的新型统计框架。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-19 DOI: 10.1371/journal.pgen.1011483
Zhichao Xu, Peng Wei
{"title":"A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia.","authors":"Zhichao Xu, Peng Wei","doi":"10.1371/journal.pgen.1011483","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011483","url":null,"abstract":"<p><p>Meta-analysis is used to aggregate the effects of interest across multiple studies, while its methodology is largely underexplored in mediation analysis, particularly in estimating the total mediation effect of high-dimensional omics mediators. Large-scale genomic consortia, such as the Trans-Omics for Precision Medicine (TOPMed) program, comprise multiple cohorts with diverse technologies to elucidate the genetic architecture and biological mechanisms underlying complex human traits and diseases. Leveraging the recent established asymptotic standard error of the R-squared (R2)-based mediation effect estimation for high-dimensional omics mediators, we have developed a novel meta-analysis framework requiring only summary statistics and allowing inter-study heterogeneity. Whereas the proposed meta-analysis can uniquely evaluate and account for potential effect heterogeneity across studies due to, for example, varying genomic profiling platforms, our extensive simulations showed that the developed method was more computationally efficient and yielded satisfactory operating characteristics comparable to analysis of the pooled individual-level data when there was no inter-study heterogeneity. We applied the developed method to 5 TOPMed studies with over 5800 participants to estimate the mediation effects of gene expression on age-related variation in systolic blood pressure and sex-related variation in high-density lipoprotein (HDL) cholesterol. The proposed method is available in R package MetaR2M on GitHub.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011483"},"PeriodicalIF":4.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. 通过保守的秀丽隐杆线虫糖蛋白激素受体FSHR-1的细胞非自主信号调节胆碱能神经传递
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-19 DOI: 10.1371/journal.pgen.1011461
Morgan Buckley, William P Jacob, Letitia Bortey, Makenzi E McClain, Alyssa L Ritter, Amy Godfrey, Allyson S Munneke, Shankar Ramachandran, Signe Kenis, Julie C Kolnik, Sarah Olofsson, Milica Nenadovich, Tanner Kutoloski, Lillian Rademacher, Alexandra Alva, Olivia Heinecke, Ryan Adkins, Shums Parkar, Reesha Bhagat, Jaelin Lunato, Isabel Beets, Michael M Francis, Jennifer R Kowalski
{"title":"Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission.","authors":"Morgan Buckley, William P Jacob, Letitia Bortey, Makenzi E McClain, Alyssa L Ritter, Amy Godfrey, Allyson S Munneke, Shankar Ramachandran, Signe Kenis, Julie C Kolnik, Sarah Olofsson, Milica Nenadovich, Tanner Kutoloski, Lillian Rademacher, Alexandra Alva, Olivia Heinecke, Ryan Adkins, Shums Parkar, Reesha Bhagat, Jaelin Lunato, Isabel Beets, Michael M Francis, Jennifer R Kowalski","doi":"10.1371/journal.pgen.1011461","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011461","url":null,"abstract":"<p><p>Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011461"},"PeriodicalIF":4.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease. 在阿尔茨海默病果蝇模型中,神经元脂肪酸结合蛋白可增强自噬作用并抑制淀粉样蛋白-β病理学。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-19 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011475
Seokhui Jang, Byoungyun Choi, Chaejin Lim, Minkyoung Kim, Ji-Eun Lee, Hyungi Lee, Eunji Baek, Kyoung Sang Cho
{"title":"Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease.","authors":"Seokhui Jang, Byoungyun Choi, Chaejin Lim, Minkyoung Kim, Ji-Eun Lee, Hyungi Lee, Eunji Baek, Kyoung Sang Cho","doi":"10.1371/journal.pgen.1011475","DOIUrl":"10.1371/journal.pgen.1011475","url":null,"abstract":"<p><p>Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011475"},"PeriodicalIF":4.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. RAD52 和 ERCC6L/PICH 对于有丝分裂中基因组的稳定性具有补偿关系。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-19 DOI: 10.1371/journal.pgen.1011479
Beth Osia, Arianna Merkell, Felicia Wednesday Lopezcolorado, Xiaoli Ping, Jeremy M Stark
{"title":"RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis.","authors":"Beth Osia, Arianna Merkell, Felicia Wednesday Lopezcolorado, Xiaoli Ping, Jeremy M Stark","doi":"10.1371/journal.pgen.1011479","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011479","url":null,"abstract":"<p><p>Mammalian RAD52 is a DNA repair factor with strand annealing and recombination mediator activities that appear important in both interphase and mitotic cells. Nonetheless, RAD52 is dispensable for cell viability. To query RAD52 synthetic lethal relationships, we performed genome-wide CRISPR knock-out screens and identified hundreds of candidate synthetic lethal interactions. We then performed secondary screening and identified genes for which depletion causes reduced viability and elevated genome instability (increased 53BP1 nuclear foci) in RAD52-deficient cells. One such factor was ERCC6L, which marks DNA bridges during anaphase, and hence is important for genome stability in mitosis. Thus, we investigated the functional interrelationship between RAD52 and ERCC6L. We found that RAD52 deficiency increases ERCC6L-coated anaphase ultrafine bridges, and that ERCC6L depletion causes elevated RAD52 foci in prometaphase and interphase cells. These effects were enhanced with replication stress (i.e. hydroxyurea) and topoisomerase IIα inhibition (ICRF-193), where post-treatment effect timings were consistent with defects in addressing stress in mitosis. Altogether, we suggest that RAD52 and ERCC6L co-compensate to protect genome stability in mitosis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011479"},"PeriodicalIF":4.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell type-specific weighting-factors to solve solid organs-specific limitations of single cell RNA-sequencing. 针对细胞类型的权重因子,解决单细胞 RNA 测序在实体器官方面的局限性。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-18 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011436
Kengo Tejima, Satoshi Kozawa, Thomas N Sato
{"title":"Cell type-specific weighting-factors to solve solid organs-specific limitations of single cell RNA-sequencing.","authors":"Kengo Tejima, Satoshi Kozawa, Thomas N Sato","doi":"10.1371/journal.pgen.1011436","DOIUrl":"10.1371/journal.pgen.1011436","url":null,"abstract":"<p><p>While single-cell RNA-sequencing (scRNA-seq) is a popular method to analyze gene expression and cellular composition at single-cell resolution, it harbors shortcomings: The failure to account for cell-to-cell variations of transcriptome-size (i.e., the total number of transcripts per cell) and also cell dissociation/processing-induced cryptic gene expression. This is particularly a problem when analyzing highly heterogeneous solid tissues/organs, which requires cell dissociation for the analysis. As a result, there exists a discrepancy between bulk RNA-seq result and virtually reconstituted bulk RNA-seq result using its composite scRNA-seq data. To fix this problem, we propose a computationally calculated coefficient, \"cell type-specific weighting-factor (cWF)\". Here, we introduce a concept and a method of its computation and report cWFs for 76 cell-types across 10 solid organs. Their fidelity is validated by more accurate reconstitution and deconvolution of bulk RNA-seq data of diverse solid organs using the scRNA-seq data and the cWFs of their composite cells. Furthermore, we also show that cWFs effectively predict aging-progression, implicating their diagnostic applications and also their association with aging mechanism. Our study provides an important method to solve critical limitations of scRNA-seq analysis of complex solid tissues/organs. Furthermore, our findings suggest a diagnostic utility and biological significance of cWFs.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011436"},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. 体细胞细胞周期蛋白 D/CYD-1 在卵子发生和维持生殖忠诚中的非典型作用,取决于 FOXO/DAF-16 的激活状态。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-15 DOI: 10.1371/journal.pgen.1011453
Umanshi Rautela, Gautam Chandra Sarkar, Ayushi Chaudhary, Debalina Chatterjee, Mohtashim Rosh, Aneeshkumar G Arimbasseri, Arnab Mukhopadhyay
{"title":"A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state.","authors":"Umanshi Rautela, Gautam Chandra Sarkar, Ayushi Chaudhary, Debalina Chatterjee, Mohtashim Rosh, Aneeshkumar G Arimbasseri, Arnab Mukhopadhyay","doi":"10.1371/journal.pgen.1011453","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011453","url":null,"abstract":"<p><p>For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011453"},"PeriodicalIF":4.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
cGMP-dependent pathway and a GPCR kinase are required for photoresponse in the nematode Pristionchus pacificus. 线虫 Pristionchus pacificus 的光反应需要 cGMP 依赖性途径和 GPCR 激酶。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011320
Kenichi Nakayama, Hirokuni Hiraga, Aya Manabe, Takahiro Chihara, Misako Okumura
{"title":"cGMP-dependent pathway and a GPCR kinase are required for photoresponse in the nematode Pristionchus pacificus.","authors":"Kenichi Nakayama, Hirokuni Hiraga, Aya Manabe, Takahiro Chihara, Misako Okumura","doi":"10.1371/journal.pgen.1011320","DOIUrl":"10.1371/journal.pgen.1011320","url":null,"abstract":"<p><p>Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction. However, the mechanism of light-sensing in other nematodes remains unknown. To address this question, we used the nematode Pristionchus pacificus, which was established as a satellite model organism for comparison with C. elegans. Similar to C. elegans, illumination with short-wavelength light induces avoidance behavior in P. pacificus. Opsin, cryptochrome/photolyase, and lite-1 were not detected in the P. pacificus genome using orthology and domain prediction-based analyses. To identify the genes related to phototransduction in P. pacificus, we conducted forward genetic screening for light-avoidance behavior and isolated five light-unresponsive mutants. Whole-genome sequencing and genetic mapping revealed that the cGMP-dependent pathway and Ppa-grk-2, which encodes a G protein-coupled receptor kinase (GRK) are required for light avoidance. Although the cGMP-dependent pathway is conserved in C. elegans phototransduction, GRK is not necessary for light avoidance in C. elegans. This suggests similarities and differences in light-sensing mechanisms between the two species. Using a reverse genetic approach, we showed that gamma-aminobutyric acid (GABA) and glutamate were involved in light avoidance. Through reporter analysis and suppression of synapse transmission, we identified candidate photosensory neurons. These findings advance our understanding of the diversity of phototransduction in nematodes even in the absence of eyes.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011320"},"PeriodicalIF":4.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inositol pyrophosphate catabolism by three families of phosphatases regulates plant growth and development. 三个磷酸酶家族对肌醇焦磷酸的分解调节植物的生长和发育。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-11-12 DOI: 10.1371/journal.pgen.1011468
Florian Laurent, Simon M Bartsch, Anuj Shukla, Felix Rico-Resendiz, Daniel Couto, Christelle Fuchs, Joël Nicolet, Sylvain Loubéry, Henning J Jessen, Dorothea Fiedler, Michael Hothorn
{"title":"Inositol pyrophosphate catabolism by three families of phosphatases regulates plant growth and development.","authors":"Florian Laurent, Simon M Bartsch, Anuj Shukla, Felix Rico-Resendiz, Daniel Couto, Christelle Fuchs, Joël Nicolet, Sylvain Loubéry, Henning J Jessen, Dorothea Fiedler, Michael Hothorn","doi":"10.1371/journal.pgen.1011468","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011468","url":null,"abstract":"<p><p>Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular levels are precisely regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks harbor phosphatase domains that hydrolyze PP-InsPs. Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSPs) and NUDIX phosphatases (NUDTs) are also involved in PP-InsP degradation. Here, we analyze the relative contributions of the three different phosphatase families to plant PP-InsP catabolism. We report the biochemical characterization of inositol pyrophosphate phosphatases from Arabidopsis and Marchantia polymorpha. Overexpression of different PFA-DSP and NUDT enzymes affects PP-InsP levels and leads to stunted growth phenotypes in Arabidopsis. nudt17/18/21 knock-out mutants have altered PP-InsP pools and gene expression patterns, but no apparent growth defects. In contrast, Marchantia polymorpha Mppfa-dsp1ge, Mpnudt1ge and Mpvip1ge mutants display severe growth and developmental phenotypes and associated changes in cellular PP-InsP levels. Analysis of Mppfa-dsp1geand Mpvip1ge mutants supports a role for PP-InsPs in Marchantia phosphate signaling, and additional functions in nitrate homeostasis and cell wall biogenesis. Simultaneous elimination of two phosphatase activities enhanced the observed growth phenotypes. Taken together, PPIP5K, PFA-DSP and NUDT inositol pyrophosphate phosphatases regulate growth and development by collectively shaping plant PP-InsP pools.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011468"},"PeriodicalIF":4.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信