Lucas Bonometti, Florian Charriat, Noah Hensen, Silvia Miñana-Posada, Hanna Johannesson, Pierre Gladieux
{"title":"Sordariales真菌NLR蛋白的基因组组织、结构域分类和核苷酸结合结构域多样性。","authors":"Lucas Bonometti, Florian Charriat, Noah Hensen, Silvia Miñana-Posada, Hanna Johannesson, Pierre Gladieux","doi":"10.1371/journal.pgen.1011739","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi have NOD-Like receptors (NLRs), homologous to the innate immune receptors found in animals, plants and bacteria. Fungal NLRs are characterized by a great variability of domain organizations, but the identity of the nucleotide-binding domains, the genomic localization, and the factors associated with variation in the composition of repertoires of fungal NLRs are not yet fully understood. To better understand the variability of fungal NLR repertoires and the underlying determinants, we conducted a thorough analysis of genome data from the ascomycete order Sordariales. Using similarity searches based on hidden Markov models profiles for canonical N-terminal, nucleotide-binding, or C-terminal domains, we characterized 4613 NLRs in 82 Sordariales taxa. By examining the Helical Third section of the nucleotide-binding domains, we substantially improved their annotation. We demonstrated that fungi have NACHT domains of both NAIP-like and TLP1-like types, similar to animals. We found that the number of NLR genes was highly variable among Sordariales families, and independent of the stringency of defense mechanisms against genomic repeat elements. NLRs were organized in clusters in the majority of taxa, and the strong correlation between the number of NLRs and the number of NLR clusters suggested that organizing in clusters may contribute to repertoire diversification. Our work highlights the similarity of fungal and animal NLRs in terms of nucleotide-binding domain types, and between fungal and plant NLRs in terms of genomic organization in clusters. Our findings will aid in the comparative analysis of the patterns and processes of diversification of NLR repertoires in various lineages of fungi and between the different kingdoms and domains of life.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 7","pages":"e1011739"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic organization, domain assortments, and nucleotide-binding domain diversity of NLR proteins in Sordariales fungi.\",\"authors\":\"Lucas Bonometti, Florian Charriat, Noah Hensen, Silvia Miñana-Posada, Hanna Johannesson, Pierre Gladieux\",\"doi\":\"10.1371/journal.pgen.1011739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungi have NOD-Like receptors (NLRs), homologous to the innate immune receptors found in animals, plants and bacteria. Fungal NLRs are characterized by a great variability of domain organizations, but the identity of the nucleotide-binding domains, the genomic localization, and the factors associated with variation in the composition of repertoires of fungal NLRs are not yet fully understood. To better understand the variability of fungal NLR repertoires and the underlying determinants, we conducted a thorough analysis of genome data from the ascomycete order Sordariales. Using similarity searches based on hidden Markov models profiles for canonical N-terminal, nucleotide-binding, or C-terminal domains, we characterized 4613 NLRs in 82 Sordariales taxa. By examining the Helical Third section of the nucleotide-binding domains, we substantially improved their annotation. We demonstrated that fungi have NACHT domains of both NAIP-like and TLP1-like types, similar to animals. We found that the number of NLR genes was highly variable among Sordariales families, and independent of the stringency of defense mechanisms against genomic repeat elements. NLRs were organized in clusters in the majority of taxa, and the strong correlation between the number of NLRs and the number of NLR clusters suggested that organizing in clusters may contribute to repertoire diversification. Our work highlights the similarity of fungal and animal NLRs in terms of nucleotide-binding domain types, and between fungal and plant NLRs in terms of genomic organization in clusters. Our findings will aid in the comparative analysis of the patterns and processes of diversification of NLR repertoires in various lineages of fungi and between the different kingdoms and domains of life.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 7\",\"pages\":\"e1011739\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011739\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011739","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic organization, domain assortments, and nucleotide-binding domain diversity of NLR proteins in Sordariales fungi.
Fungi have NOD-Like receptors (NLRs), homologous to the innate immune receptors found in animals, plants and bacteria. Fungal NLRs are characterized by a great variability of domain organizations, but the identity of the nucleotide-binding domains, the genomic localization, and the factors associated with variation in the composition of repertoires of fungal NLRs are not yet fully understood. To better understand the variability of fungal NLR repertoires and the underlying determinants, we conducted a thorough analysis of genome data from the ascomycete order Sordariales. Using similarity searches based on hidden Markov models profiles for canonical N-terminal, nucleotide-binding, or C-terminal domains, we characterized 4613 NLRs in 82 Sordariales taxa. By examining the Helical Third section of the nucleotide-binding domains, we substantially improved their annotation. We demonstrated that fungi have NACHT domains of both NAIP-like and TLP1-like types, similar to animals. We found that the number of NLR genes was highly variable among Sordariales families, and independent of the stringency of defense mechanisms against genomic repeat elements. NLRs were organized in clusters in the majority of taxa, and the strong correlation between the number of NLRs and the number of NLR clusters suggested that organizing in clusters may contribute to repertoire diversification. Our work highlights the similarity of fungal and animal NLRs in terms of nucleotide-binding domain types, and between fungal and plant NLRs in terms of genomic organization in clusters. Our findings will aid in the comparative analysis of the patterns and processes of diversification of NLR repertoires in various lineages of fungi and between the different kingdoms and domains of life.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.