PLoS GeneticsPub Date : 2024-07-22eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011348
Christina M Gallo, Sabrina A Kistler, Anna Natrakul, Adam T Labadorf, Uwe Beffert, Angela Ho
{"title":"APOER2 splicing repertoire in Alzheimer's disease: Insights from long-read RNA sequencing.","authors":"Christina M Gallo, Sabrina A Kistler, Anna Natrakul, Adam T Labadorf, Uwe Beffert, Angela Ho","doi":"10.1371/journal.pgen.1011348","DOIUrl":"10.1371/journal.pgen.1011348","url":null,"abstract":"<p><p>Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011348"},"PeriodicalIF":4.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-19eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011365
Cansu Kose, Laura A Lindsey-Boltz, Aziz Sancar, Yuchao Jiang
{"title":"Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans.","authors":"Cansu Kose, Laura A Lindsey-Boltz, Aziz Sancar, Yuchao Jiang","doi":"10.1371/journal.pgen.1011365","DOIUrl":"10.1371/journal.pgen.1011365","url":null,"abstract":"<p><p>Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps in a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), and a strain that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011365"},"PeriodicalIF":4.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-18eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011318
Nicol Rueda-M, Carolina Pardo-Diaz, Gabriela Montejo-Kovacevich, W Owen McMillan, Krzysztof M Kozak, Carlos F Arias, Jonathan Ready, Shane McCarthy, Richard Durbin, Chris D Jiggins, Joana I Meier, Camilo Salazar
{"title":"Genomic evidence reveals three W-autosome fusions in Heliconius butterflies.","authors":"Nicol Rueda-M, Carolina Pardo-Diaz, Gabriela Montejo-Kovacevich, W Owen McMillan, Krzysztof M Kozak, Carlos F Arias, Jonathan Ready, Shane McCarthy, Richard Durbin, Chris D Jiggins, Joana I Meier, Camilo Salazar","doi":"10.1371/journal.pgen.1011318","DOIUrl":"10.1371/journal.pgen.1011318","url":null,"abstract":"<p><p>Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011318"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-17eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011312
Matthew Hartfield, Sylvain Glémin
{"title":"Polygenic selection to a changing optimum under self-fertilisation.","authors":"Matthew Hartfield, Sylvain Glémin","doi":"10.1371/journal.pgen.1011312","DOIUrl":"10.1371/journal.pgen.1011312","url":null,"abstract":"<p><p>Many traits are polygenic, affected by multiple genetic variants throughout the genome. Selection acting on these traits involves co-ordinated allele-frequency changes at these underlying variants, and this process has been extensively studied in random-mating populations. Yet many species self-fertilise to some degree, which incurs changes to genetic diversity, recombination and genome segregation. These factors cumulatively influence how polygenic selection is realised in nature. Here, we use analytical modelling and stochastic simulations to investigate to what extent self-fertilisation affects polygenic adaptation to a new environment. Our analytical solutions show that while selfing can increase adaptation to an optimum, it incurs linkage disequilibrium that can slow down the initial spread of favoured mutations due to selection interference, and favours the fixation of alleles with opposing trait effects. Simulations show that while selection interference is present, high levels of selfing (at least 90%) aids adaptation to a new optimum, showing a higher long-term fitness. If mutations are pleiotropic then only a few major-effect variants fix along with many neutral hitchhikers, with a transient increase in linkage disequilibrium. These results show potential advantages to self-fertilisation when adapting to a new environment, and how the mating system affects the genetic composition of polygenic selection.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011312"},"PeriodicalIF":4.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-16eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011197
Miguel Hernández Sánchez-Rebato, Veit Schubert, Charles I White
{"title":"Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana.","authors":"Miguel Hernández Sánchez-Rebato, Veit Schubert, Charles I White","doi":"10.1371/journal.pgen.1011197","DOIUrl":"10.1371/journal.pgen.1011197","url":null,"abstract":"<p><p>We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011197"},"PeriodicalIF":4.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141628131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-11eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011288
Michael Francis, Kenneth E Westerman, Alisa K Manning, Kaixiong Ye
{"title":"Gene-vegetarianism interactions in calcium, estimated glomerular filtration rate, and testosterone identified in genome-wide analysis across 30 biomarkers.","authors":"Michael Francis, Kenneth E Westerman, Alisa K Manning, Kaixiong Ye","doi":"10.1371/journal.pgen.1011288","DOIUrl":"10.1371/journal.pgen.1011288","url":null,"abstract":"<p><p>We examined the associations of vegetarianism with metabolic biomarkers using traditional and genetic epidemiology. First, we addressed inconsistencies in self-reported vegetarianism among UK Biobank participants by utilizing data from two dietary surveys to find a cohort of strict European vegetarians (N = 2,312). Vegetarians were matched 1:4 with nonvegetarians for non-genetic association analyses, revealing significant effects of vegetarianism in 15 of 30 biomarkers. Cholesterol measures plus vitamin D were significantly lower in vegetarians, while triglycerides were higher. A genome-wide association study revealed no genome-wide significant (GWS; 5×10-8) associations with vegetarian behavior. We performed genome-wide gene-vegetarianism interaction analyses for the biomarkers, and detected a GWS interaction impacting calcium at rs72952628 (P = 4.47×10-8). rs72952628 is in MMAA, a B12 metabolic pathway gene; B12 has major deficiency potential in vegetarians. Gene-based interaction tests revealed two significant genes, RNF168 in testosterone (P = 1.45×10-6) and DOCK4 in estimated glomerular filtration rate (eGFR) (P = 6.76×10-7), which have previously been associated with testicular and renal traits, respectively. These nutrigenetic findings indicate genotype can modify the associations between vegetarianism and health outcomes.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011288"},"PeriodicalIF":4.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic evolution of the heterochromatin sensing histone demethylase IBM1.","authors":"Yinwen Zhang, Hosung Jang, Ziliang Luo, Yinxin Dong, Yangyang Xu, Yamini Kantamneni, Robert J Schmitz","doi":"10.1371/journal.pgen.1011358","DOIUrl":"10.1371/journal.pgen.1011358","url":null,"abstract":"<p><p>Heterochromatin is critical for maintaining genome stability, especially in flowering plants, where it relies on a feedback loop involving the H3K9 methyltransferase, KRYPTONITE (KYP), and the DNA methyltransferase CHROMOMETHYLASE3 (CMT3). The H3K9 demethylase INCREASED IN BONSAI METHYLATION 1 (IBM1) counteracts the detrimental consequences of KYP-CMT3 activity in transcribed genes. IBM1 expression in Arabidopsis is uniquely regulated by methylation of the 7th intron, allowing it to monitor global H3K9me2 levels. We show the methylated intron is prevalent across flowering plants and its underlying sequence exhibits dynamic evolution. We also find extensive genetic and expression variations in KYP, CMT3, and IBM1 across flowering plants. We identify Arabidopsis accessions resembling weak ibm1 mutants and Brassicaceae species with reduced IBM1 expression or deletions. Evolution towards reduced IBM1 activity in some flowering plants could explain the frequent natural occurrence of diminished or lost CMT3 activity and loss of gene body DNA methylation, as cmt3 mutants in A. thaliana mitigate the deleterious effects of IBM1.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011358"},"PeriodicalIF":4.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-10eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011345
Nancy Paniagua, C Jackson Roberts, Lauren E Gonzalez, David Monedero-Alonso, Valerie Reinke
{"title":"The Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line.","authors":"Nancy Paniagua, C Jackson Roberts, Lauren E Gonzalez, David Monedero-Alonso, Valerie Reinke","doi":"10.1371/journal.pgen.1011345","DOIUrl":"10.1371/journal.pgen.1011345","url":null,"abstract":"<p><p>The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011345"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-09eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011339
Dan-Dan Zhang, Xiao-Yu He, Liu Yang, Bang-Sheng Wu, Yan Fu, Wei-Shi Liu, Yu Guo, Chen-Jie Fei, Ju-Jiao Kang, Jian-Feng Feng, Wei Cheng, Lan Tan, Jin-Tai Yu
{"title":"Exome sequencing identifies novel genetic variants associated with varicose veins.","authors":"Dan-Dan Zhang, Xiao-Yu He, Liu Yang, Bang-Sheng Wu, Yan Fu, Wei-Shi Liu, Yu Guo, Chen-Jie Fei, Ju-Jiao Kang, Jian-Feng Feng, Wei Cheng, Lan Tan, Jin-Tai Yu","doi":"10.1371/journal.pgen.1011339","DOIUrl":"10.1371/journal.pgen.1011339","url":null,"abstract":"<p><strong>Background: </strong>Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood.</p><p><strong>Methods: </strong>We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis.</p><p><strong>Findings: </strong>A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV.</p><p><strong>Conclusions: </strong>Our findings highlight the importance of causal genes for VV and provide new directions for treatment.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011339"},"PeriodicalIF":4.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2024-07-05eCollection Date: 2024-07-01DOI: 10.1371/journal.pgen.1011036
Yocelyn T Gutiérrez-Guerrero, Megan Phifer-Rixey, Michael W Nachman
{"title":"Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas.","authors":"Yocelyn T Gutiérrez-Guerrero, Megan Phifer-Rixey, Michael W Nachman","doi":"10.1371/journal.pgen.1011036","DOIUrl":"10.1371/journal.pgen.1011036","url":null,"abstract":"<p><p>Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011036"},"PeriodicalIF":4.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}