Michelle L Brinkmeier, Su Qing Wang, Hannah A Pittman, Leonard Y Cheung, Lev Prasov
{"title":"Myelin regulatory factor (MYRF) is a critical early regulator of retinal pigment epithelial development.","authors":"Michelle L Brinkmeier, Su Qing Wang, Hannah A Pittman, Leonard Y Cheung, Lev Prasov","doi":"10.1371/journal.pgen.1011670","DOIUrl":null,"url":null,"abstract":"<p><p>Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 4","pages":"e1011670"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011670","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.