果蝇髓样造血祖细胞中GABA分流途径中ROS生成与抗氧化剂合成的代谢偶联。

IF 3.7 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-09-29 eCollection Date: 2025-09-01 DOI:10.1371/journal.pgen.1011602
Manisha Goyal, Sakshi Tiwari, Jagriti Arora, Bruce Cooper, Ramaswamy Subramanian, Tina Mukherjee
{"title":"果蝇髓样造血祖细胞中GABA分流途径中ROS生成与抗氧化剂合成的代谢偶联。","authors":"Manisha Goyal, Sakshi Tiwari, Jagriti Arora, Bruce Cooper, Ramaswamy Subramanian, Tina Mukherjee","doi":"10.1371/journal.pgen.1011602","DOIUrl":null,"url":null,"abstract":"<p><p>Redox balance is crucial for normal development of stem and progenitor cells that reside in oxidative environments. In this study, we explore the mechanisms of redox homeostasis in such niches and show that myeloid-like blood progenitor cells of the Drosophila larval lymph gland, that generate reactive oxygen species (ROS), moderate it developmentally by de novo synthesizing glutathione (GSH) to ensure redox balance. During lymph gland development, as the blood-progenitor cells oxidize pyruvate via the TCA cycle leading to the generation of ROS, GABA-shunt restricts pyruvate dehydrogenase (PDH) activity and consequently TCA cycle flux. This moderation enables a metabolic rerouting of TCA-derived oxaloacetate (OAA) to pyruvate via gluconeogenesis, which is necessary to sustain serine levels, the rate-limiting precursor for de novo GSH synthesis. Disruption of GABA metabolism causes metabolic imbalance, marked by excessive PDH activity and heightened TCA cycle flux. This results in reduced OAA availability, impaired gluconeogenic capacity, and insufficient serine/GSH production, ultimately leading to ROS dysregulation. Overall, this study identifies a unique metabolic framework in blood progenitor cells, where the GABA shunt, by restraining PDH and TCA cycle activity, maintains ROS at developmental levels. By coupling TCA-derived metabolites to GSH production, this state enables the TCA cycle to support both ROS generation and ROS scavenging, ensuring the developmental roles of ROS while preserving progenitor homeostasis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 9","pages":"e1011602"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic coupling of ROS generation and antioxidant synthesis by the GABA shunt pathway in myeloid-like blood progenitor cells of Drosophila.\",\"authors\":\"Manisha Goyal, Sakshi Tiwari, Jagriti Arora, Bruce Cooper, Ramaswamy Subramanian, Tina Mukherjee\",\"doi\":\"10.1371/journal.pgen.1011602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox balance is crucial for normal development of stem and progenitor cells that reside in oxidative environments. In this study, we explore the mechanisms of redox homeostasis in such niches and show that myeloid-like blood progenitor cells of the Drosophila larval lymph gland, that generate reactive oxygen species (ROS), moderate it developmentally by de novo synthesizing glutathione (GSH) to ensure redox balance. During lymph gland development, as the blood-progenitor cells oxidize pyruvate via the TCA cycle leading to the generation of ROS, GABA-shunt restricts pyruvate dehydrogenase (PDH) activity and consequently TCA cycle flux. This moderation enables a metabolic rerouting of TCA-derived oxaloacetate (OAA) to pyruvate via gluconeogenesis, which is necessary to sustain serine levels, the rate-limiting precursor for de novo GSH synthesis. Disruption of GABA metabolism causes metabolic imbalance, marked by excessive PDH activity and heightened TCA cycle flux. This results in reduced OAA availability, impaired gluconeogenic capacity, and insufficient serine/GSH production, ultimately leading to ROS dysregulation. Overall, this study identifies a unique metabolic framework in blood progenitor cells, where the GABA shunt, by restraining PDH and TCA cycle activity, maintains ROS at developmental levels. By coupling TCA-derived metabolites to GSH production, this state enables the TCA cycle to support both ROS generation and ROS scavenging, ensuring the developmental roles of ROS while preserving progenitor homeostasis.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 9\",\"pages\":\"e1011602\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011602\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原平衡对于存在于氧化环境中的干细胞和祖细胞的正常发育至关重要。在这项研究中,我们探索了这些生态位中氧化还原稳态的机制,并表明果蝇幼虫淋巴腺中产生活性氧(ROS)的髓样血祖细胞通过重新合成谷胱甘肽(GSH)来调节其发育,以确保氧化还原平衡。在淋巴腺发育过程中,由于血祖细胞通过TCA循环氧化丙酮酸导致ROS的产生,gaba分流限制了丙酮酸脱氢酶(PDH)活性,从而限制了TCA循环通量。这种调节使tca衍生的草酰乙酸(OAA)通过糖异生的代谢重定向为丙酮酸,这是维持丝氨酸水平所必需的,丝氨酸是重新合成谷胱甘肽的限速前体。GABA代谢的破坏导致代谢失衡,其特征是PDH活性过高和TCA循环通量升高。这导致OAA可用性降低,糖异生能力受损,丝氨酸/谷胱甘肽产生不足,最终导致ROS失调。总体而言,本研究确定了血液祖细胞中独特的代谢框架,其中GABA分流通过抑制PDH和TCA循环活性,将ROS维持在发育水平。通过将TCA衍生的代谢物与GSH的产生耦合,这种状态使TCA循环能够支持ROS的产生和清除,在保持祖细胞稳态的同时确保ROS的发育作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic coupling of ROS generation and antioxidant synthesis by the GABA shunt pathway in myeloid-like blood progenitor cells of Drosophila.

Redox balance is crucial for normal development of stem and progenitor cells that reside in oxidative environments. In this study, we explore the mechanisms of redox homeostasis in such niches and show that myeloid-like blood progenitor cells of the Drosophila larval lymph gland, that generate reactive oxygen species (ROS), moderate it developmentally by de novo synthesizing glutathione (GSH) to ensure redox balance. During lymph gland development, as the blood-progenitor cells oxidize pyruvate via the TCA cycle leading to the generation of ROS, GABA-shunt restricts pyruvate dehydrogenase (PDH) activity and consequently TCA cycle flux. This moderation enables a metabolic rerouting of TCA-derived oxaloacetate (OAA) to pyruvate via gluconeogenesis, which is necessary to sustain serine levels, the rate-limiting precursor for de novo GSH synthesis. Disruption of GABA metabolism causes metabolic imbalance, marked by excessive PDH activity and heightened TCA cycle flux. This results in reduced OAA availability, impaired gluconeogenic capacity, and insufficient serine/GSH production, ultimately leading to ROS dysregulation. Overall, this study identifies a unique metabolic framework in blood progenitor cells, where the GABA shunt, by restraining PDH and TCA cycle activity, maintains ROS at developmental levels. By coupling TCA-derived metabolites to GSH production, this state enables the TCA cycle to support both ROS generation and ROS scavenging, ensuring the developmental roles of ROS while preserving progenitor homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信