{"title":"长读序列数据的遗传关联分析。","authors":"Gengming He, Stephen W Scherer, Lisa J Strug","doi":"10.1371/journal.pgen.1011887","DOIUrl":null,"url":null,"abstract":"<p><p>Long-read sequencing (LRS) technologies have enhanced the ability to resolve complex genomic architecture and determine the 'phase' relationships of genetic variants over long distances. Although genome-wide association studies (GWAS) identify individual variants associated with complex traits, they do not typically account for whether multiple associated signals at a locus may act in cis or trans, or whether they reflect allelic heterogeneity. As a result, effects that arise specifically from phase relationships may remain hidden in analyses using short-read and microarray data. While the advent of LRS has enabled accurate measurement of phase in population cohorts, statistical methods that leverage phase in genetic association analysis remain underdeveloped. Here, we introduce the Regression on Phase (RoP) method, which directly models cis and trans phase effects between variants under a regression framework. In simulations, RoP outperforms genotype interaction tests that detect phase effects indirectly, and distinguishes in-cis from in-trans phase effects. We implemented RoP at two cystic fibrosis (CF) modifier loci discovered by GWAS. At the chromosome 7q35 trypsinogen locus, RoP confirmed that two variants contributed independently (allelic heterogeneity). At the SLC6A14 locus on chromosome X, phase analysis uncovered a coordinated regulatory mechanism in which a promoter variant modulates lung phenotypes in individuals with CF when acting in cis with a lung-specific enhancer (E2765449/enhD). This coordinated regulation was confirmed in functional studies. These findings highlight the potential of leveraging phase information from LRS in genetic association studies. Analyzing phase effects with RoP can provide deeper insights into the complex genetic architectures underlying disease phenotypes, ultimately guiding more informed functional investigations and potentially revealing new therapeutic targets.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 9","pages":"e1011887"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500163/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the analysis of genetic association with long-read sequencing data.\",\"authors\":\"Gengming He, Stephen W Scherer, Lisa J Strug\",\"doi\":\"10.1371/journal.pgen.1011887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-read sequencing (LRS) technologies have enhanced the ability to resolve complex genomic architecture and determine the 'phase' relationships of genetic variants over long distances. Although genome-wide association studies (GWAS) identify individual variants associated with complex traits, they do not typically account for whether multiple associated signals at a locus may act in cis or trans, or whether they reflect allelic heterogeneity. As a result, effects that arise specifically from phase relationships may remain hidden in analyses using short-read and microarray data. While the advent of LRS has enabled accurate measurement of phase in population cohorts, statistical methods that leverage phase in genetic association analysis remain underdeveloped. Here, we introduce the Regression on Phase (RoP) method, which directly models cis and trans phase effects between variants under a regression framework. In simulations, RoP outperforms genotype interaction tests that detect phase effects indirectly, and distinguishes in-cis from in-trans phase effects. We implemented RoP at two cystic fibrosis (CF) modifier loci discovered by GWAS. At the chromosome 7q35 trypsinogen locus, RoP confirmed that two variants contributed independently (allelic heterogeneity). At the SLC6A14 locus on chromosome X, phase analysis uncovered a coordinated regulatory mechanism in which a promoter variant modulates lung phenotypes in individuals with CF when acting in cis with a lung-specific enhancer (E2765449/enhD). This coordinated regulation was confirmed in functional studies. These findings highlight the potential of leveraging phase information from LRS in genetic association studies. Analyzing phase effects with RoP can provide deeper insights into the complex genetic architectures underlying disease phenotypes, ultimately guiding more informed functional investigations and potentially revealing new therapeutic targets.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 9\",\"pages\":\"e1011887\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011887\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011887","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
On the analysis of genetic association with long-read sequencing data.
Long-read sequencing (LRS) technologies have enhanced the ability to resolve complex genomic architecture and determine the 'phase' relationships of genetic variants over long distances. Although genome-wide association studies (GWAS) identify individual variants associated with complex traits, they do not typically account for whether multiple associated signals at a locus may act in cis or trans, or whether they reflect allelic heterogeneity. As a result, effects that arise specifically from phase relationships may remain hidden in analyses using short-read and microarray data. While the advent of LRS has enabled accurate measurement of phase in population cohorts, statistical methods that leverage phase in genetic association analysis remain underdeveloped. Here, we introduce the Regression on Phase (RoP) method, which directly models cis and trans phase effects between variants under a regression framework. In simulations, RoP outperforms genotype interaction tests that detect phase effects indirectly, and distinguishes in-cis from in-trans phase effects. We implemented RoP at two cystic fibrosis (CF) modifier loci discovered by GWAS. At the chromosome 7q35 trypsinogen locus, RoP confirmed that two variants contributed independently (allelic heterogeneity). At the SLC6A14 locus on chromosome X, phase analysis uncovered a coordinated regulatory mechanism in which a promoter variant modulates lung phenotypes in individuals with CF when acting in cis with a lung-specific enhancer (E2765449/enhD). This coordinated regulation was confirmed in functional studies. These findings highlight the potential of leveraging phase information from LRS in genetic association studies. Analyzing phase effects with RoP can provide deeper insights into the complex genetic architectures underlying disease phenotypes, ultimately guiding more informed functional investigations and potentially revealing new therapeutic targets.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.