Journal of Biological Dynamics最新文献

筛选
英文 中文
Optimal control strategies on HIV/AIDS and pneumonia co-infection with mathematical modelling approach. 用数学建模方法优化艾滋病毒/艾滋病和肺炎合并感染的控制策略。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2023-12-22 DOI: 10.1080/17513758.2023.2288873
Shewafera Wondimagegnhu Teklu, Birhanu Baye Terefe, Dejen Ketema Mamo, Yohannes Fissha Abebaw
{"title":"Optimal control strategies on HIV/AIDS and pneumonia co-infection with mathematical modelling approach.","authors":"Shewafera Wondimagegnhu Teklu, Birhanu Baye Terefe, Dejen Ketema Mamo, Yohannes Fissha Abebaw","doi":"10.1080/17513758.2023.2288873","DOIUrl":"10.1080/17513758.2023.2288873","url":null,"abstract":"<p><p>In this paper, a compartmental model on the co-infection of pneumonia and HIV/AIDS with optimal control strategies was formulated using the system of ordinary differential equations. Using qualitative methods, we have analysed the mono-infection and HIV/AIDS and pneumonia co-infection models. We have computed effective reproduction numbers by applying the next-generation matrix method, applying Castillo Chavez criteria the models disease-free equilibrium points global stabilities were shown, while we have used the Centre manifold criteria to determine that the pneumonia infection and pneumonia and HIV/AIDS co-infection exhibit the phenomenon of backward bifurcation whenever the corresponding effective reproduction number is less than unity. We carried out the numerical simulations to investigate the behaviour of the co-infection model solutions. Furthermore, we have investigated various optimal control strategies to predict the best control strategy to minimize and possibly to eradicate the HIV/AIDS and pneumonia co-infection from the community.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2288873"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding the generation time distribution uncertainty on R0 estimation from exponential growth rates. 从指数增长率估算 R0 的世代时间分布不确定性边界。
IF 1.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-10-16 DOI: 10.1080/17513758.2024.2410720
James Cochran, Bogdan Oancea, Dan Pirjol
{"title":"Bounding the generation time distribution uncertainty on <i>R</i><sub>0</sub> estimation from exponential growth rates.","authors":"James Cochran, Bogdan Oancea, Dan Pirjol","doi":"10.1080/17513758.2024.2410720","DOIUrl":"https://doi.org/10.1080/17513758.2024.2410720","url":null,"abstract":"<p><p>The basic reproduction number <math><msub><mi>R</mi><mn>0</mn></msub></math> is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating <math><msub><mi>R</mi><mn>0</mn></msub></math> using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on <math><msub><mi>R</mi><mn>0</mn></msub></math> using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the <math><mi>r</mi><mo>-</mo><msub><mi>R</mi><mn>0</mn></msub></math> relationship.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2410720"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of long-lived plasma cells in viral clearance. 长寿命浆细胞在病毒清除中的作用。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-03-06 DOI: 10.1080/17513758.2024.2325523
Mingran Zhang, Meili Li, Junling Ma
{"title":"The role of long-lived plasma cells in viral clearance.","authors":"Mingran Zhang, Meili Li, Junling Ma","doi":"10.1080/17513758.2024.2325523","DOIUrl":"10.1080/17513758.2024.2325523","url":null,"abstract":"<p><p>The adaptive immune system has two types of plasma cells (PC), long-lived plasma cells (LLPC) and short-lived plasma cells (SLPC), that differ in their lifespan. In this paper, we propose that LLPC is crucial to the clearance of viral particles in addition to reducing the viral basic reproduction number in secondary infections. We use a sequence of within-host mathematical models to show that, CD8 T cells, SLPC and memory B cells cannot achieve full viral clearance, and the viral load will reach a low positive equilibrium level because of a continuous replenishment of target cells. However, the presence of LLPC is crucial for viral clearance.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2325523"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of spreading speeds and travelling waves for the lattice pioneer-climax competition system. 网格先驱-高潮竞争系统的传播速度和行波估算。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-06-11 DOI: 10.1080/17513758.2024.2365792
Haifeng Song, Yuxiang Zhang
{"title":"Estimation of spreading speeds and travelling waves for the lattice pioneer-climax competition system.","authors":"Haifeng Song, Yuxiang Zhang","doi":"10.1080/17513758.2024.2365792","DOIUrl":"https://doi.org/10.1080/17513758.2024.2365792","url":null,"abstract":"<p><p>This paper concerns the invasion dynamics of the lattice pioneer-climax competition model with parameter regions in which the system is non-monotone. We estimate the spreading speeds and establish appropriate conditions under which the spreading speeds are linearly selected. Moreover, the existence of travelling waves is determined by constructing suitable upper and lower solutions. It shows that the spreading speed coincides with the minimum wave speed of travelling waves if the diffusion rate of the invasive species is larger or equal to that of the native species. Our results are new to estimate the spreading speed of non-monotone lattice pioneer-climax systems, and the techniques developed in this work can be used to study the invasion dynamics of the pioneer-climax system with interaction delays, which could extend the results in the literature. The analysis replies on the construction of auxiliary systems, upper and lower solutions, and the monotone dynamical system approach.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2365792"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving adherence to a daily PrEP regimen is key when considering long-time partnerships. 在考虑长期合作伙伴关系时,提高对每日 PrEP 方案的依从性是关键所在。
IF 1.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1080/17513758.2024.2390843
S J Gutowska, K A Hoffman, K F Gurski
{"title":"Improving adherence to a daily PrEP regimen is key when considering long-time partnerships.","authors":"S J Gutowska, K A Hoffman, K F Gurski","doi":"10.1080/17513758.2024.2390843","DOIUrl":"https://doi.org/10.1080/17513758.2024.2390843","url":null,"abstract":"<p><p>A population model of HIV that includes susceptible individuals not taking the pre-exposure prophylaxis (PrEP), susceptible individuals taking daily PrEP, and infected individuals is developed for casual partnerships, as well as monogamous and non-monogamous long-term partnerships. Reflecting the reality of prescription availability and usage in the U.S., the PrEP taking susceptible population is a mix of individuals designated by the CDC as high and low risk for acquiring HIV. The rate of infection for non-monogamous long-term partnerships with differential susceptibility is challenging to calculate and requires Markov chain theory to represent the movement between susceptible populations before infection. The parameters associated with PrEP initiation, suspension and adherence impact both the reproduction number of the model and the elasticity indices of the reproduction model. A multi-parameter analysis reveals that increasing adherence has the largest effect on decreasing the number of new infections.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2390843"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamics of tuberculosis transmission model with different genders. 不同性别的结核病传播动态模型。
IF 1.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-09-06 DOI: 10.1080/17513758.2024.2394665
Si Wang, Hui Cao
{"title":"The dynamics of tuberculosis transmission model with different genders.","authors":"Si Wang, Hui Cao","doi":"10.1080/17513758.2024.2394665","DOIUrl":"https://doi.org/10.1080/17513758.2024.2394665","url":null,"abstract":"<p><p>The dynamics of tuberculosis transmission model with different genders are to be established and studied. The basic regeneration numbers <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>=</mo><msub><mrow><mi>R</mi></mrow><mi>F</mi></msub><mo>+</mo><msub><mrow><mi>R</mi></mrow><mi>M</mi></msub></math> are to be defined, where <math><msub><mrow><mi>R</mi></mrow><mi>F</mi></msub></math> and <math><msub><mrow><mi>R</mi></mrow><mi>M</mi></msub></math> to be the basic reproduction number of tuberculosis transmission in female and male populations, respectively. The existence and global stability of the disease-free equilibrium was discussed when <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo><</mo><mn>1</mn></math>. The global dynamic behaviours of the corresponding limit system under some conditions are to be provided, including the existence, uniqueness, and global stability of the disease-free equilibrium and endemic equilibrium. The numerical simulation shows that the endemic equilibrium may be unique and stable when <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>, and the system will undergo Hopf bifurcation based on some parameter values. Finally, we applied this model to analyse the transmission of tuberculosis in China, estimated the incidence of tuberculosis in China in 2035, and gave the conclusion that controlling the incidence of tuberculosis in male populations could better reduce the incidence of tuberculosis in China.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2394665"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of a non-autonomous delay mosquito population suppression model with Wolbachia-infected male mosquitoes. 沃尔巴克氏体感染雄蚊非自主延迟种群抑制模型的动力学研究。
IF 1.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-12-04 DOI: 10.1080/17513758.2024.2437034
Yufeng Wang, Jianshe Yu
{"title":"Dynamics of a non-autonomous delay mosquito population suppression model with <i>Wolbachia</i>-infected male mosquitoes.","authors":"Yufeng Wang, Jianshe Yu","doi":"10.1080/17513758.2024.2437034","DOIUrl":"https://doi.org/10.1080/17513758.2024.2437034","url":null,"abstract":"<p><p>In this paper, we develop a non-autonomous delay differential equation model for mosquito population suppression. After establishing the positiveness and boundedness of the solutions, we study the dynamical behaviours of the model with or without <i>Wolbachia</i>-infected male mosquitoes. More specifically, for the model without infected male mosquitoes, we analyse the asymptotic stability of the equilibria and demonstrate that the model undergo Hopf bifurcations under certain conditions. For the model incorporating infected male mosquitoes, we derive sufficient conditions for the global asymptotic stability of the origin. Numerical examples are provided to illustrate and support our theoretical findings.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2437034"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global dynamics of discrete mathematical models of tuberculosis. 结核病离散数学模型的全球动力学。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-03-17 DOI: 10.1080/17513758.2024.2323724
Saber Elaydi, René Lozi
{"title":"Global dynamics of discrete mathematical models of tuberculosis.","authors":"Saber Elaydi, René Lozi","doi":"10.1080/17513758.2024.2323724","DOIUrl":"10.1080/17513758.2024.2323724","url":null,"abstract":"<p><p>In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> which is based on the disease-free equilibrium, and a new net reproduction number <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo></math> based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mtext> </mtext><mn>1</mn></math> and unstable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>. Moreover, the endemic equilibrium is locally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo><mo><</mo><mn>1</mn><mo><</mo><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2323724"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stochastic multi-host model for West Nile virus transmission. 西尼罗河病毒传播的多宿主随机模型。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI: 10.1080/17513758.2023.2293780
Emily B Horton, Suzanne L Robertson
{"title":"A stochastic multi-host model for West Nile virus transmission.","authors":"Emily B Horton, Suzanne L Robertson","doi":"10.1080/17513758.2023.2293780","DOIUrl":"10.1080/17513758.2023.2293780","url":null,"abstract":"<p><p>When initially introduced into a susceptible population, a disease may die out or result in a major outbreak. We present a Continuous-Time Markov Chain model for enzootic WNV transmission between two avian host species and a single vector, and use multitype branching process theory to determine the probability of disease extinction based upon the type of infected individual initially introducing the disease into the population - an exposed vector, infectious vector, or infectious host of either species. We explore how the likelihood of disease extinction depends on the ability of each host species to transmit WNV, vector biting rates on host species, and the relative abundance of host species, as well as vector abundance. Theoretical predictions are compared to the outcome of stochastic simulations. We find the community composition of hosts and vectors, as well as the means of disease introduction, can greatly affect the probability of disease extinction.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2293780"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis. 调查疫苗犹豫不决对新发传染病的影响:数学和数值分析。
IF 2.8 4区 数学
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-01-04 DOI: 10.1080/17513758.2023.2298988
Indunil M Hewage, Kevin E M Church, Elissa J Schwartz
{"title":"Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis.","authors":"Indunil M Hewage, Kevin E M Church, Elissa J Schwartz","doi":"10.1080/17513758.2023.2298988","DOIUrl":"10.1080/17513758.2023.2298988","url":null,"abstract":"<p><p>Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>, and provided a complete analysis of the bifurcation at <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>=</mo><mn>1</mn></math>. Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2298988"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信