Modelling measles transmission dynamics and the impact of control strategies on outbreak Management.

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2025-12-01 Epub Date: 2025-03-18 DOI:10.1080/17513758.2025.2479448
Olumuyiwa James Peter
{"title":"Modelling measles transmission dynamics and the impact of control strategies on outbreak Management.","authors":"Olumuyiwa James Peter","doi":"10.1080/17513758.2025.2479448","DOIUrl":null,"url":null,"abstract":"<p><p>Measles is a highly contagious and potentially fatal disease, despite the availability of effective immunizations. This study formulates a deterministic mathematical model to investigate the transmission dynamics of measles, with eight compartments representing different epidemiological states such as susceptible, vaccinated, exposed, infected, early-treated, delayed-treated, hospitalized, and recovered individuals. We use the Next Generation Matrix (NGN) approach to obtain the basic reproduction number (<math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>) and examine local stability at the disease-free equilibrium (DFE). Sensitivity analysis with Partial Rank Correlation Coefficients (PRCC) identifies significant parameters influencing disease dynamics, such as vaccination rates, transmission rate, treatment timings, and disease-induced mortality rates. Simulation results show that delayed therapy has a limited effect on lowering the infected population, emphasizing the importance of immediate intervention. Early treatment considerably reduces the number of infected individuals, whereas improved recovery rates in hospitalized cases result in fewer hospitalizations. Vaccination is extremely successful, with increased rates significantly lowering the susceptible population while boosting the vaccinated population. Higher disease-related mortality rates reduce the afflicted population, stressing the importance of strong control methods. The transmission rate has a substantial impact on infection rates and hospitalizations, emphasizing the need for effective public health policies and healthcare capacity. The combined effect of immunization and early treatment provides useful information for optimizing control measures. This study emphasizes the need of quick and effective measures in managing measles outbreaks and serves as a platform for future research into improved public health methods.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2479448"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2479448","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Measles is a highly contagious and potentially fatal disease, despite the availability of effective immunizations. This study formulates a deterministic mathematical model to investigate the transmission dynamics of measles, with eight compartments representing different epidemiological states such as susceptible, vaccinated, exposed, infected, early-treated, delayed-treated, hospitalized, and recovered individuals. We use the Next Generation Matrix (NGN) approach to obtain the basic reproduction number (R0) and examine local stability at the disease-free equilibrium (DFE). Sensitivity analysis with Partial Rank Correlation Coefficients (PRCC) identifies significant parameters influencing disease dynamics, such as vaccination rates, transmission rate, treatment timings, and disease-induced mortality rates. Simulation results show that delayed therapy has a limited effect on lowering the infected population, emphasizing the importance of immediate intervention. Early treatment considerably reduces the number of infected individuals, whereas improved recovery rates in hospitalized cases result in fewer hospitalizations. Vaccination is extremely successful, with increased rates significantly lowering the susceptible population while boosting the vaccinated population. Higher disease-related mortality rates reduce the afflicted population, stressing the importance of strong control methods. The transmission rate has a substantial impact on infection rates and hospitalizations, emphasizing the need for effective public health policies and healthcare capacity. The combined effect of immunization and early treatment provides useful information for optimizing control measures. This study emphasizes the need of quick and effective measures in managing measles outbreaks and serves as a platform for future research into improved public health methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信