具有狩猎合作的随机修正莱斯利-高尔捕食者-猎物系统的动力学。

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-06-20 DOI:10.1080/17513758.2024.2366495
Chao Li, Peilin Shi
{"title":"具有狩猎合作的随机修正莱斯利-高尔捕食者-猎物系统的动力学。","authors":"Chao Li, Peilin Shi","doi":"10.1080/17513758.2024.2366495","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2366495"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.\",\"authors\":\"Chao Li, Peilin Shi\",\"doi\":\"10.1080/17513758.2024.2366495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"18 1\",\"pages\":\"2366495\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2024.2366495\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2366495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个改良莱斯利-高尔(Leslie-Gower)随机双物种捕食者-猎物系统。同时,我们假设捕食者之间存在狩猎合作。通过使用 Itô 公式和构建适当的 Lyapunov 函数,我们首先证明了对于任何给定的正初始值,都存在唯一的全局正解。此外,基于切比雪夫不等式,我们还讨论了随机终极有界性和随机永久性。然后,在某些条件下,我们证明了系统的均值持久性和消亡性。最后,我们通过数值模拟验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.

In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信