{"title":"具有狩猎合作的随机修正莱斯利-高尔捕食者-猎物系统的动力学。","authors":"Chao Li, Peilin Shi","doi":"10.1080/17513758.2024.2366495","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2366495"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.\",\"authors\":\"Chao Li, Peilin Shi\",\"doi\":\"10.1080/17513758.2024.2366495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"18 1\",\"pages\":\"2366495\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2024.2366495\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2366495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.
In this paper, we consider a stochastic two-species predator-prey system with modified Leslie-Gower. Meanwhile, we assume that hunting cooperation occurs in the predators. By using Itô formula and constructing a proper Lyapunov function, we first show that there is a unique global positive solution for any given positive initial value. Furthermore, based on Chebyshev inequality, the stochastic ultimate boundedness and stochastic permanence are discussed. Then, under some conditions, we prove the persistence in mean and extinction of system. Finally, we verify our results by numerical simulations.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.