{"title":"长寿命浆细胞在病毒清除中的作用。","authors":"Mingran Zhang, Meili Li, Junling Ma","doi":"10.1080/17513758.2024.2325523","DOIUrl":null,"url":null,"abstract":"<p><p>The adaptive immune system has two types of plasma cells (PC), long-lived plasma cells (LLPC) and short-lived plasma cells (SLPC), that differ in their lifespan. In this paper, we propose that LLPC is crucial to the clearance of viral particles in addition to reducing the viral basic reproduction number in secondary infections. We use a sequence of within-host mathematical models to show that, CD8 T cells, SLPC and memory B cells cannot achieve full viral clearance, and the viral load will reach a low positive equilibrium level because of a continuous replenishment of target cells. However, the presence of LLPC is crucial for viral clearance.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2325523"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of long-lived plasma cells in viral clearance.\",\"authors\":\"Mingran Zhang, Meili Li, Junling Ma\",\"doi\":\"10.1080/17513758.2024.2325523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adaptive immune system has two types of plasma cells (PC), long-lived plasma cells (LLPC) and short-lived plasma cells (SLPC), that differ in their lifespan. In this paper, we propose that LLPC is crucial to the clearance of viral particles in addition to reducing the viral basic reproduction number in secondary infections. We use a sequence of within-host mathematical models to show that, CD8 T cells, SLPC and memory B cells cannot achieve full viral clearance, and the viral load will reach a low positive equilibrium level because of a continuous replenishment of target cells. However, the presence of LLPC is crucial for viral clearance.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"18 1\",\"pages\":\"2325523\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2024.2325523\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2325523","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
适应性免疫系统有两种类型的浆细胞(PC),即长寿命浆细胞(LLPC)和短寿命浆细胞(SLPC),它们的寿命各不相同。在本文中,我们提出长寿命浆细胞除了在二次感染中减少病毒的基本繁殖数量外,对清除病毒颗粒也至关重要。我们利用一系列宿主内数学模型证明,CD8 T 细胞、SLPC 和记忆 B 细胞无法实现完全清除病毒,由于靶细胞的不断补充,病毒载量将达到较低的正平衡水平。然而,LLPC 的存在对病毒清除至关重要。
The role of long-lived plasma cells in viral clearance.
The adaptive immune system has two types of plasma cells (PC), long-lived plasma cells (LLPC) and short-lived plasma cells (SLPC), that differ in their lifespan. In this paper, we propose that LLPC is crucial to the clearance of viral particles in addition to reducing the viral basic reproduction number in secondary infections. We use a sequence of within-host mathematical models to show that, CD8 T cells, SLPC and memory B cells cannot achieve full viral clearance, and the viral load will reach a low positive equilibrium level because of a continuous replenishment of target cells. However, the presence of LLPC is crucial for viral clearance.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.