Stationary distribution of a stochastic SEIR model with infectivity in the incubation period and homestead-isolation on the susceptible under regime switching.

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2025-12-01 Epub Date: 2025-06-24 DOI:10.1080/17513758.2025.2521509
Ying He, Bo Bi
{"title":"Stationary distribution of a stochastic SEIR model with infectivity in the incubation period and homestead-isolation on the susceptible under regime switching.","authors":"Ying He, Bo Bi","doi":"10.1080/17513758.2025.2521509","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with a stochastic SEIR model with infectivity in the incubation period and homestead-isolation on the susceptible, which is perturbed by white and colour noises. The model has a unique stationary distribution, which reflects the persistence of epidemics over a long period. Using the Has-minskii theorem and constructing stochastic Lyapunov functions with regime switching, we derive an important condition <math><msubsup><mi>R</mi><mn>0</mn><mi>s</mi></msubsup><mo>.</mo></math> Comparing the expression for <math><msub><mi>R</mi><mn>0</mn></msub></math> and <math><msubsup><mi>R</mi><mn>0</mn><mi>s</mi></msubsup><mo>,</mo></math> we can see that if there is no environmental noise, then <math><msubsup><mi>R</mi><mn>0</mn><mi>s</mi></msubsup><mo>=</mo><msub><mi>R</mi><mn>0</mn></msub><mo>.</mo></math> It ensures the asymptotic stability of the positive equilibrium <math><msup><mi>E</mi><mo>∗</mo></msup></math> of the corresponding deterministic system.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2521509"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2521509","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with a stochastic SEIR model with infectivity in the incubation period and homestead-isolation on the susceptible, which is perturbed by white and colour noises. The model has a unique stationary distribution, which reflects the persistence of epidemics over a long period. Using the Has-minskii theorem and constructing stochastic Lyapunov functions with regime switching, we derive an important condition R0s. Comparing the expression for R0 and R0s, we can see that if there is no environmental noise, then R0s=R0. It ensures the asymptotic stability of the positive equilibrium E of the corresponding deterministic system.

具有潜伏期传染性的随机SEIR模型的平稳分布,易感者在状态转换下的家园隔离。
本文研究了一种受白噪声和彩色噪声干扰的具有潜伏期传染性和易感个体家园隔离的随机SEIR模型。该模型具有独特的平稳分布,反映了流行病在很长一段时间内的持续性。利用哈斯-明斯基定理,构造具有状态切换的随机Lyapunov函数,得到了一个重要条件r0。对比R0和R0的表达式可以看出,如果不存在环境噪声,则R0 =R0。它保证了相应确定性系统的正平衡E *的渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信