Journal of Pseudo-Differential Operators and Applications最新文献

筛选
英文 中文
On a class of Kirchhoff problems with nonlocal terms and logarithmic nonlinearity 关于一类具有非局部项和对数非线性的基尔霍夫问题
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-07-07 DOI: 10.1007/s11868-024-00624-z
El-Houari Hamza, Arhrrabi Elhoussain, J. Vanterler da da C. Sousa
{"title":"On a class of Kirchhoff problems with nonlocal terms and logarithmic nonlinearity","authors":"El-Houari Hamza, Arhrrabi Elhoussain, J. Vanterler da da C. Sousa","doi":"10.1007/s11868-024-00624-z","DOIUrl":"https://doi.org/10.1007/s11868-024-00624-z","url":null,"abstract":"<p>In this present paper, we concern investigating nonlinear Kirchhoff-type problems subject to Dirichlet boundary conditions, incorporating nonlocal terms and logarithmic nonlinearity in the <span>(phi )</span>-Hilfer fractional spaces with the <span>(eta (cdot ))</span>-Laplacian operator by means of the do Mountain Pass Theorem, Fountain Theorem and Dual Fountain Theorem.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-differential operators in several p-adic variables and sub-Markovian semigroups 若干 p-adic 变量中的伪微分算子和子马尔可夫半群
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-07-05 DOI: 10.1007/s11868-024-00623-0
Anselmo Torresblanca-Badillo, Edilberto Arroyo-Ortiz, Ronald Barrios-Garizao
{"title":"Pseudo-differential operators in several p-adic variables and sub-Markovian semigroups","authors":"Anselmo Torresblanca-Badillo, Edilberto Arroyo-Ortiz, Ronald Barrios-Garizao","doi":"10.1007/s11868-024-00623-0","DOIUrl":"https://doi.org/10.1007/s11868-024-00623-0","url":null,"abstract":"<p>This article marks the inaugural exploration of certain classes of negative or positive definite functions in several <i>p</i>-adic variables. Associated with these functions, two classes of pseudo-differential operators, convolution semigroups, some positive measures and <span>(L^{2}(mathbb {Q}_{p}^{n}))</span>-sub-Markovian semigroups are introduced.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuity properties of multi-parameter pseudodifferential operators on Bony class 骨类上多参数伪微分算子的连续特性
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-07-05 DOI: 10.1007/s11868-024-00622-1
Wei Ding, Min Gu, Yueping Zhu
{"title":"Continuity properties of multi-parameter pseudodifferential operators on Bony class","authors":"Wei Ding, Min Gu, Yueping Zhu","doi":"10.1007/s11868-024-00622-1","DOIUrl":"https://doi.org/10.1007/s11868-024-00622-1","url":null,"abstract":"<p>It is well-known that the pseudodifferential operator with the symbol in Bony class, a subset of <span>(S_{1,1}^0(mathbb R^n))</span>, is bounded on <span>(L^{2}(mathbb {R}^{n}))</span>. The main purpose of this paper is to extend the classical results to multi-parameter case, i.e., to discuss the boundedness on <span>(L^2(mathbb {R}^{n_1+n_2}))</span> and on <span>(h^{p}(mathbb {R}^{n_{1}}times mathbb {R}^{n_{2}}) (0&lt;ple 1))</span> of multi-parameter pseudodifferential operator with symbol satisfying multi-parameter Bony conditions.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces 大变量赫兹-莫雷空间上的分数型马尔钦凯维奇积分及其换元器
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-06-27 DOI: 10.1007/s11868-024-00621-2
Xijuan Chen, Guanghui Lu, Wenwen Tao
{"title":"Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces","authors":"Xijuan Chen, Guanghui Lu, Wenwen Tao","doi":"10.1007/s11868-024-00621-2","DOIUrl":"https://doi.org/10.1007/s11868-024-00621-2","url":null,"abstract":"<p>The aim of this paper is to establish the boundedness of the fractional type Marcinkiewicz integral operator <span>(mathcal {M}_{alpha ,rho ,m})</span> and its higher order commutator <span>(mathcal {M}_{alpha ,rho ,m,b^l})</span> generated by <span>(bin textrm{BMO}({mathbb {R}}^n))</span> and <span>(mathcal {M}_{alpha ,rho ,m})</span> on the weighted Lebesgue spaces <span>(L_omega ^p({mathbb {R}}^n))</span>. Under assumption that the variable exponents <span>(alpha (cdot ))</span> and <span>(q(cdot ))</span> satisfy the <span>(log )</span> decay at infinity and origin, the authors show that the <span>(mathcal {M}_{alpha ,rho ,m})</span> and <span>(mathcal {M}_{alpha ,rho ,m,b^l})</span> are bounded on the grand variable Herz spaces <span>(dot{K}_{q(cdot )}^{alpha (cdot ),p),theta }({mathbb {R}}^n))</span> and the grand variable Herz-Morrey spaces <span>(Mdot{K}_{p),theta ,q(cdot )}^{alpha (cdot ),lambda }({mathbb {R}}^n))</span>, respectively.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"29 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p-adic Bessel $$alpha $$ -potentials and some of their applications p-adic Bessel $$alpha $$ -potentials 及其部分应用
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-06-22 DOI: 10.1007/s11868-024-00613-2
Anselmo Torresblanca-Badillo, J. E. Ospino, Francisco Arias
{"title":"p-adic Bessel $$alpha $$ -potentials and some of their applications","authors":"Anselmo Torresblanca-Badillo, J. E. Ospino, Francisco Arias","doi":"10.1007/s11868-024-00613-2","DOIUrl":"https://doi.org/10.1007/s11868-024-00613-2","url":null,"abstract":"<p>In this article, we will study a class of pseudo-differential operators on <i>p</i>-adic numbers, which we will call <i>p</i>-adic Bessel <span>(alpha )</span>-potentials. These operators are denoted and defined in the form </p><span>$$begin{aligned} (mathcal {E}_{varvec{phi },alpha }f)(x)=-mathcal {F}^{-1}_{zeta rightarrow x}left( left[ max {1,|varvec{phi }(||zeta ||_{p})|} right] ^{-alpha }widehat{f}(zeta )right) , text { } xin {mathbb {Q}}_{p}^{n}, alpha in mathbb {R}, end{aligned}$$</span><p>where <i>f</i> is a <i>p</i>-adic distribution and <span>(left[ max {1,|varvec{phi }(||zeta ||_{p})|}right] ^{-alpha })</span> is the symbol of the operator. We will study some properties of the convolution kernel (denoted as <span>(K_{alpha })</span>) of the pseudo-differential operator <span>(mathcal {E}_{varvec{phi },alpha })</span>, <span>(alpha in mathbb {R})</span>; and demonstrate that the family <span>((K_{alpha })_{alpha &gt;0})</span> determines a convolution semigroup on <span>(mathbb {Q}_{p}^{n})</span>. Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on <i>p</i>-adic numbers.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"183 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hartley–Bessel function: product formula and convolution structure 哈特里-贝塞尔函数:乘积公式和卷积结构
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-05-07 DOI: 10.1007/s11868-024-00610-5
F. Bouzeffour
{"title":"The Hartley–Bessel function: product formula and convolution structure","authors":"F. Bouzeffour","doi":"10.1007/s11868-024-00610-5","DOIUrl":"https://doi.org/10.1007/s11868-024-00610-5","url":null,"abstract":"<p>This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the <span>(-1)</span> little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.\u0000</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"15 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasinormable Fréchet spaces and M. W. Wong’s inequality 类非线性弗雷谢特空间和 M. W. Wong 不等式
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-05-03 DOI: 10.1007/s11868-024-00606-1
Eduard A. Nigsch, Norbert Ortner
{"title":"Quasinormable Fréchet spaces and M. W. Wong’s inequality","authors":"Eduard A. Nigsch, Norbert Ortner","doi":"10.1007/s11868-024-00606-1","DOIUrl":"https://doi.org/10.1007/s11868-024-00606-1","url":null,"abstract":"<p>A short proof of M. W. Wong’s inequality <span>(leftVert J_{-s}varphi rightVert _p le varepsilon leftVert J_{-t}varphi rightVert _p + C leftVert varphi rightVert _p)</span> is given.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"72 5 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The general Dabrowski–Sitarz–Zalecki type theorem for odd dimensional manifolds with boundary III 有边界奇维流形的一般达布罗夫斯基-西塔尔兹-扎莱基类型定理 III
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-05-03 DOI: 10.1007/s11868-024-00604-3
Yuchen Yang, Yong Wang
{"title":"The general Dabrowski–Sitarz–Zalecki type theorem for odd dimensional manifolds with boundary III","authors":"Yuchen Yang, Yong Wang","doi":"10.1007/s11868-024-00604-3","DOIUrl":"https://doi.org/10.1007/s11868-024-00604-3","url":null,"abstract":"<p>In this paper, for the Dirac operator and three One-forms we give the proof of the another general Dabrowski–Sitarz–Zalecki type theorem for the spectral Einstein functional on odd dimensional manifolds with boundary.\u0000</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"58 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional Euclidean bosonic equation via variational 通过变分的分数欧几里得玻色方程
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-05-03 DOI: 10.1007/s11868-024-00611-4
Nemat Nyamoradi, J. Vanterler da C. Sousa
{"title":"Fractional Euclidean bosonic equation via variational","authors":"Nemat Nyamoradi, J. Vanterler da C. Sousa","doi":"10.1007/s11868-024-00611-4","DOIUrl":"https://doi.org/10.1007/s11868-024-00611-4","url":null,"abstract":"<p>In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives </p><span>$$begin{aligned} {left{ begin{array}{ll} {_{x}}D_{infty }^{beta }{_{-infty }}D_{x}^{beta }e^{C {_{x}}D_{infty }^{beta }{_{-infty }}D_{x}^{beta }}u = lambda omega (x)u+ Q(x)g(x,u)&amp;{}text{ in },,{mathbb {R}}, uin mathcal {H}_c^{beta ,infty } ({mathbb {R}}), end{array}right. } end{aligned}$$</span><p>where <span>(beta in (0,frac{1}{2}))</span>, <span>({_{-infty }}D_{x}^{beta }u(cdot ), {_{x}}D_{infty }^{beta }u(cdot ))</span> denote the left and right Liouville–Weyl fractional derivatives, <span>(omega ,Q:{mathbb {R}}rightarrow {mathbb {R}})</span> is a positive function with <span>(omega ,Qin L^{frac{1}{2beta }} ({mathbb {R}}))</span> and <span>(g: {mathbb {R}}rightarrow {mathbb {R}})</span> is a continuous function satisfying suitable conditions. Finally, an example is provided.\u0000</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Bargmann transform in the study of affine heat kernel transform 巴格曼变换在仿射热核变换研究中的应用
IF 1.1 3区 数学
Journal of Pseudo-Differential Operators and Applications Pub Date : 2024-04-26 DOI: 10.1007/s11868-024-00603-4
Partha Sarathi Patra, Shubham R. Bais, D. Venku Naidu
{"title":"Application of Bargmann transform in the study of affine heat kernel transform","authors":"Partha Sarathi Patra, Shubham R. Bais, D. Venku Naidu","doi":"10.1007/s11868-024-00603-4","DOIUrl":"https://doi.org/10.1007/s11868-024-00603-4","url":null,"abstract":"<p>Consider the differential operator </p><span>$$begin{aligned} Delta _{a,b} = Big (frac{d^2}{dt^2} + frac{4pi ia}{b}tfrac{d}{dt} - frac{4pi ^2a^2t^2}{b^2} + frac{2pi ia}{b}IBig ), t&gt;0, a,bin {mathbb {R}}, end{aligned}$$</span><p>where <i>I</i> is the identity operator. The operator <span>(Delta _{a,b})</span> is known as affine Laplacian. We consider the heat equation associated to the operator <span>(Delta _{a,b})</span> with initial condition <i>f</i> from <span>(L^2({mathbb {R}}^n))</span>. Its solution is denoted by <span>(e^{tDelta _{a,b}}f)</span>. The transform <span>(f mapsto e^{tDelta _{a,b}}f)</span> is called affine heat kernel transform (or A-heat kernel transform). In this article, we consider (analytically extended) affine heat kernel transform and characterize the image of <span>(displaystyle L^2({mathbb {R}}))</span> under it as a weighted Bergman space of analytic functions on <span>({mathbb {C}})</span> with nonnegative weight. Consequently, we study <span>(L^p)</span>-boundedness of affine heat kernel transform, <span>(L^p)</span>-boundedness of affine Bargmann projection and related duality results. Moreover, we define affine Weyl translations and characterize the maximal and minimal spaces of analytic functions on <span>({mathbb {C}})</span> which are invariant under the affine Weyl translations.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"28 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信