p-adic Bessel $$\alpha $$ -potentials 及其部分应用

IF 0.9 3区 数学 Q2 MATHEMATICS
Anselmo Torresblanca-Badillo, J. E. Ospino, Francisco Arias
{"title":"p-adic Bessel $$\\alpha $$ -potentials 及其部分应用","authors":"Anselmo Torresblanca-Badillo, J. E. Ospino, Francisco Arias","doi":"10.1007/s11868-024-00613-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we will study a class of pseudo-differential operators on <i>p</i>-adic numbers, which we will call <i>p</i>-adic Bessel <span>\\(\\alpha \\)</span>-potentials. These operators are denoted and defined in the form </p><span>$$\\begin{aligned} (\\mathcal {E}_{\\varvec{\\phi },\\alpha }f)(x)=-\\mathcal {F}^{-1}_{\\zeta \\rightarrow x}\\left( \\left[ \\max \\{1,|\\varvec{\\phi }(||\\zeta ||_{p})|\\} \\right] ^{-\\alpha }\\widehat{f}(\\zeta )\\right) , \\text { } x\\in {\\mathbb {Q}}_{p}^{n}, \\ \\ \\alpha \\in \\mathbb {R}, \\end{aligned}$$</span><p>where <i>f</i> is a <i>p</i>-adic distribution and <span>\\(\\left[ \\max \\{1,|\\varvec{\\phi }(||\\zeta ||_{p})|\\}\\right] ^{-\\alpha }\\)</span> is the symbol of the operator. We will study some properties of the convolution kernel (denoted as <span>\\(K_{\\alpha }\\)</span>) of the pseudo-differential operator <span>\\(\\mathcal {E}_{\\varvec{\\phi },\\alpha }\\)</span>, <span>\\(\\alpha \\in \\mathbb {R}\\)</span>; and demonstrate that the family <span>\\((K_{\\alpha })_{\\alpha &gt;0}\\)</span> determines a convolution semigroup on <span>\\(\\mathbb {Q}_{p}^{n}\\)</span>. Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on <i>p</i>-adic numbers.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"p-adic Bessel $$\\\\alpha $$ -potentials and some of their applications\",\"authors\":\"Anselmo Torresblanca-Badillo, J. E. Ospino, Francisco Arias\",\"doi\":\"10.1007/s11868-024-00613-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we will study a class of pseudo-differential operators on <i>p</i>-adic numbers, which we will call <i>p</i>-adic Bessel <span>\\\\(\\\\alpha \\\\)</span>-potentials. These operators are denoted and defined in the form </p><span>$$\\\\begin{aligned} (\\\\mathcal {E}_{\\\\varvec{\\\\phi },\\\\alpha }f)(x)=-\\\\mathcal {F}^{-1}_{\\\\zeta \\\\rightarrow x}\\\\left( \\\\left[ \\\\max \\\\{1,|\\\\varvec{\\\\phi }(||\\\\zeta ||_{p})|\\\\} \\\\right] ^{-\\\\alpha }\\\\widehat{f}(\\\\zeta )\\\\right) , \\\\text { } x\\\\in {\\\\mathbb {Q}}_{p}^{n}, \\\\ \\\\ \\\\alpha \\\\in \\\\mathbb {R}, \\\\end{aligned}$$</span><p>where <i>f</i> is a <i>p</i>-adic distribution and <span>\\\\(\\\\left[ \\\\max \\\\{1,|\\\\varvec{\\\\phi }(||\\\\zeta ||_{p})|\\\\}\\\\right] ^{-\\\\alpha }\\\\)</span> is the symbol of the operator. We will study some properties of the convolution kernel (denoted as <span>\\\\(K_{\\\\alpha }\\\\)</span>) of the pseudo-differential operator <span>\\\\(\\\\mathcal {E}_{\\\\varvec{\\\\phi },\\\\alpha }\\\\)</span>, <span>\\\\(\\\\alpha \\\\in \\\\mathbb {R}\\\\)</span>; and demonstrate that the family <span>\\\\((K_{\\\\alpha })_{\\\\alpha &gt;0}\\\\)</span> determines a convolution semigroup on <span>\\\\(\\\\mathbb {Q}_{p}^{n}\\\\)</span>. Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on <i>p</i>-adic numbers.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00613-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00613-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将研究一类 p-adic 数上的伪微分算子,我们称之为 p-adic Bessel (\alpha \)-势。这些算子以 $$\begin{aligned} (\mathcal {E}_{\varvec\{phi }、\f)(x)=-\mathcal {F}^{-1}_{zeta \rightarrow x}\left( \left[ \max \{1,|\varvec\{phi }(||\zeta ||_{p})\ |} \right] ^{-\alpha }\widehat{f}(\zeta )\right) 、\text { } x\in {\mathbb {Q}}_{p}^{n}, \\\alpha \in \mathbb {R}, \end{aligned}$$ 其中 f 是 p-adic 分布,((\left[ \max \{1,|varvec{\phi }(||\zeta ||_{p})|\}right] ^{-\alpha }\) 是算子的符号。我们将研究伪差分算子 \(\mathcal {E}_\{varvec{\phi },\alpha }\), \(\alpha \in \mathbb {R}\) 的卷积核(表示为 \(K_{\alpha }\) )的一些性质;并证明族 \((K_{\alpha })_{\alpha >0}\) 决定了 \(\mathbb {Q}_{p}^{n}\) 上的卷积半群。此外,我们还将引入新类型的费勒半群,并探索新的马尔可夫过程和 p-adic 数上的非均质初值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-adic Bessel $$\alpha $$ -potentials and some of their applications

In this article, we will study a class of pseudo-differential operators on p-adic numbers, which we will call p-adic Bessel \(\alpha \)-potentials. These operators are denoted and defined in the form

$$\begin{aligned} (\mathcal {E}_{\varvec{\phi },\alpha }f)(x)=-\mathcal {F}^{-1}_{\zeta \rightarrow x}\left( \left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\} \right] ^{-\alpha }\widehat{f}(\zeta )\right) , \text { } x\in {\mathbb {Q}}_{p}^{n}, \ \ \alpha \in \mathbb {R}, \end{aligned}$$

where f is a p-adic distribution and \(\left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\}\right] ^{-\alpha }\) is the symbol of the operator. We will study some properties of the convolution kernel (denoted as \(K_{\alpha }\)) of the pseudo-differential operator \(\mathcal {E}_{\varvec{\phi },\alpha }\), \(\alpha \in \mathbb {R}\); and demonstrate that the family \((K_{\alpha })_{\alpha >0}\) determines a convolution semigroup on \(\mathbb {Q}_{p}^{n}\). Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on p-adic numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信