哈特里-贝塞尔函数:乘积公式和卷积结构

IF 0.9 3区 数学 Q2 MATHEMATICS
F. Bouzeffour
{"title":"哈特里-贝塞尔函数:乘积公式和卷积结构","authors":"F. Bouzeffour","doi":"10.1007/s11868-024-00610-5","DOIUrl":null,"url":null,"abstract":"<p>This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the <span>\\(-1\\)</span> little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.\n</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hartley–Bessel function: product formula and convolution structure\",\"authors\":\"F. Bouzeffour\",\"doi\":\"10.1007/s11868-024-00610-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the <span>\\\\(-1\\\\)</span> little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.\\n</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00610-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00610-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了以两个贝塞尔函数的实数组合表示的哈特利核的单参数扩展,称为哈特利-贝塞尔函数。哈特里-贝塞尔函数的关键特征是通过 \(-1\) 小雅各比多项式的极限转换得出的。哈特利-贝塞尔函数作为一阶差分-微分算子的特征函数出现,并具有索宁积分型表示。我们的主要贡献在于研究了这一函数的一个新的乘积公式,从而促进了实线上创新的广义平移和卷积结构的发展。所获得的乘积公式是以该函数的积分形式表达的,它具有明确的非正向均匀有界度量。因此,非保正卷积结构得以建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hartley–Bessel function: product formula and convolution structure

This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the \(-1\) little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信