{"title":"The Hartley–Bessel function: product formula and convolution structure","authors":"F. Bouzeffour","doi":"10.1007/s11868-024-00610-5","DOIUrl":null,"url":null,"abstract":"<p>This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the <span>\\(-1\\)</span> little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.\n</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00610-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley–Bessel function. The key feature of the Hartley–Bessel function is derived through a limit transition from the \(-1\) little Jacobi polynomials. The Hartley–Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.