大变量赫兹-莫雷空间上的分数型马尔钦凯维奇积分及其换元器

IF 0.9 3区 数学 Q2 MATHEMATICS
Xijuan Chen, Guanghui Lu, Wenwen Tao
{"title":"大变量赫兹-莫雷空间上的分数型马尔钦凯维奇积分及其换元器","authors":"Xijuan Chen, Guanghui Lu, Wenwen Tao","doi":"10.1007/s11868-024-00621-2","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to establish the boundedness of the fractional type Marcinkiewicz integral operator <span>\\(\\mathcal {M}_{\\alpha ,\\rho ,m}\\)</span> and its higher order commutator <span>\\(\\mathcal {M}_{\\alpha ,\\rho ,m,b^l}\\)</span> generated by <span>\\(b\\in \\textrm{BMO}({\\mathbb {R}}^n)\\)</span> and <span>\\(\\mathcal {M}_{\\alpha ,\\rho ,m}\\)</span> on the weighted Lebesgue spaces <span>\\(L_\\omega ^p({\\mathbb {R}}^n)\\)</span>. Under assumption that the variable exponents <span>\\(\\alpha (\\cdot )\\)</span> and <span>\\(q(\\cdot )\\)</span> satisfy the <span>\\(\\log \\)</span> decay at infinity and origin, the authors show that the <span>\\(\\mathcal {M}_{\\alpha ,\\rho ,m}\\)</span> and <span>\\(\\mathcal {M}_{\\alpha ,\\rho ,m,b^l}\\)</span> are bounded on the grand variable Herz spaces <span>\\(\\dot{K}_{q(\\cdot )}^{\\alpha (\\cdot ),p),\\theta }({\\mathbb {R}}^n)\\)</span> and the grand variable Herz-Morrey spaces <span>\\(M\\dot{K}_{p),\\theta ,q(\\cdot )}^{\\alpha (\\cdot ),\\lambda }({\\mathbb {R}}^n)\\)</span>, respectively.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces\",\"authors\":\"Xijuan Chen, Guanghui Lu, Wenwen Tao\",\"doi\":\"10.1007/s11868-024-00621-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to establish the boundedness of the fractional type Marcinkiewicz integral operator <span>\\\\(\\\\mathcal {M}_{\\\\alpha ,\\\\rho ,m}\\\\)</span> and its higher order commutator <span>\\\\(\\\\mathcal {M}_{\\\\alpha ,\\\\rho ,m,b^l}\\\\)</span> generated by <span>\\\\(b\\\\in \\\\textrm{BMO}({\\\\mathbb {R}}^n)\\\\)</span> and <span>\\\\(\\\\mathcal {M}_{\\\\alpha ,\\\\rho ,m}\\\\)</span> on the weighted Lebesgue spaces <span>\\\\(L_\\\\omega ^p({\\\\mathbb {R}}^n)\\\\)</span>. Under assumption that the variable exponents <span>\\\\(\\\\alpha (\\\\cdot )\\\\)</span> and <span>\\\\(q(\\\\cdot )\\\\)</span> satisfy the <span>\\\\(\\\\log \\\\)</span> decay at infinity and origin, the authors show that the <span>\\\\(\\\\mathcal {M}_{\\\\alpha ,\\\\rho ,m}\\\\)</span> and <span>\\\\(\\\\mathcal {M}_{\\\\alpha ,\\\\rho ,m,b^l}\\\\)</span> are bounded on the grand variable Herz spaces <span>\\\\(\\\\dot{K}_{q(\\\\cdot )}^{\\\\alpha (\\\\cdot ),p),\\\\theta }({\\\\mathbb {R}}^n)\\\\)</span> and the grand variable Herz-Morrey spaces <span>\\\\(M\\\\dot{K}_{p),\\\\theta ,q(\\\\cdot )}^{\\\\alpha (\\\\cdot ),\\\\lambda }({\\\\mathbb {R}}^n)\\\\)</span>, respectively.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00621-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00621-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是建立分数型 Marcinkiewicz 积分算子 \(\mathcal {M}_{\alpha ,\rho ,m}\) 及其高阶换元 \(\mathcal {M}_{\alpha 、\在加权 Lebesgue 空间 \(L_\omega ^p({//mathbb {R}}^n)\) 上生成的 b\in textrm{BMO}({\mathbb {R}}^n)\ 和 \(\mathcal {M}_{\alpha ,\rho ,m}\).在假设可变指数 \(α (\cdot )\) 和 \(q(\cdot )\) 在无穷远和原点处满足 \(\log \) 衰减的情况下,作者证明了 \(\mathcal {M}_{\alpha ,\rho ,m}\) 和 \(\mathcal {M}_{\alpha ,\rho ,m、b^l}\) 在大变量赫兹空间 \(\dot{K}_{q(\cdot )}^{alpha (\cdot ),p) 上是有界的、\theta }({\mathbb{R}}^n)\)和大变量 Herz-Morrey 空间 \(M\dot{K}_{p),\theta ,q(\cdot )}^{\alpha (\cdot ),\lambda }({\mathbb{R}}^n)\)上分别有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional type Marcinkiewicz integral and its commutator on grand variable Herz-Morrey spaces

The aim of this paper is to establish the boundedness of the fractional type Marcinkiewicz integral operator \(\mathcal {M}_{\alpha ,\rho ,m}\) and its higher order commutator \(\mathcal {M}_{\alpha ,\rho ,m,b^l}\) generated by \(b\in \textrm{BMO}({\mathbb {R}}^n)\) and \(\mathcal {M}_{\alpha ,\rho ,m}\) on the weighted Lebesgue spaces \(L_\omega ^p({\mathbb {R}}^n)\). Under assumption that the variable exponents \(\alpha (\cdot )\) and \(q(\cdot )\) satisfy the \(\log \) decay at infinity and origin, the authors show that the \(\mathcal {M}_{\alpha ,\rho ,m}\) and \(\mathcal {M}_{\alpha ,\rho ,m,b^l}\) are bounded on the grand variable Herz spaces \(\dot{K}_{q(\cdot )}^{\alpha (\cdot ),p),\theta }({\mathbb {R}}^n)\) and the grand variable Herz-Morrey spaces \(M\dot{K}_{p),\theta ,q(\cdot )}^{\alpha (\cdot ),\lambda }({\mathbb {R}}^n)\), respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信