{"title":"通过变分的分数欧几里得玻色方程","authors":"Nemat Nyamoradi, J. Vanterler da C. Sousa","doi":"10.1007/s11868-024-00611-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} {_{x}}D_{\\infty }^{\\beta }{_{-\\infty }}D_{x}^{\\beta }e^{C {_{x}}D_{\\infty }^{\\beta }{_{-\\infty }}D_{x}^{\\beta }}u = \\lambda \\omega (x)u+ Q(x)g(x,u)&{}\\text{ in }\\,\\,{\\mathbb {R}},\\\\ u\\in \\mathcal {H}_c^{\\beta ,\\infty } ({\\mathbb {R}}), \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(\\beta \\in (0,\\frac{1}{2})\\)</span>, <span>\\({_{-\\infty }}D_{x}^{\\beta }u(\\cdot ), {_{x}}D_{\\infty }^{\\beta }u(\\cdot )\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\(\\omega ,Q:{\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is a positive function with <span>\\(\\omega ,Q\\in L^{\\frac{1}{2\\beta }} ({\\mathbb {R}})\\)</span> and <span>\\(g: {\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is a continuous function satisfying suitable conditions. Finally, an example is provided.\n</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Euclidean bosonic equation via variational\",\"authors\":\"Nemat Nyamoradi, J. Vanterler da C. Sousa\",\"doi\":\"10.1007/s11868-024-00611-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} {_{x}}D_{\\\\infty }^{\\\\beta }{_{-\\\\infty }}D_{x}^{\\\\beta }e^{C {_{x}}D_{\\\\infty }^{\\\\beta }{_{-\\\\infty }}D_{x}^{\\\\beta }}u = \\\\lambda \\\\omega (x)u+ Q(x)g(x,u)&{}\\\\text{ in }\\\\,\\\\,{\\\\mathbb {R}},\\\\\\\\ u\\\\in \\\\mathcal {H}_c^{\\\\beta ,\\\\infty } ({\\\\mathbb {R}}), \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\beta \\\\in (0,\\\\frac{1}{2})\\\\)</span>, <span>\\\\({_{-\\\\infty }}D_{x}^{\\\\beta }u(\\\\cdot ), {_{x}}D_{\\\\infty }^{\\\\beta }u(\\\\cdot )\\\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\\\(\\\\omega ,Q:{\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a positive function with <span>\\\\(\\\\omega ,Q\\\\in L^{\\\\frac{1}{2\\\\beta }} ({\\\\mathbb {R}})\\\\)</span> and <span>\\\\(g: {\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a continuous function satisfying suitable conditions. Finally, an example is provided.\\n</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00611-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00611-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中我们研究了以下一类带有柳维尔-韦尔分数导数的欧几里得玻色方程的解的存在性 $$\begin{aligned} {\left\{ \begin{array}{ll} {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }e^{C {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }}u = \lambda \omega (x)u+ Q(x)g(x、u)&;{}text{ in }\,{\mathbb {R}},\ u\in \mathcal {H}_c^{\beta ,\infty }({\mathbb {R}}), (end{array}/right.}\end{aligned}$$where \(\beta \in (0,\frac{1}{2})\),\({_{-\infty }}D_{x}^{\beta }u(\cdot ), {_{x}}D_{\infty }^{\beta }u(\cdot )\) denote the left and right Liouville-Weyl fractional derivatives, \(\omega ,Q.) denote the left and right Liouville-Weyl fractional derivatives:{是一个正函数,在 L^{frac{1}{2\beta }} ({\mathbb {R}} 中有({\mathbb {R}})\) 和 (g: {\mathbb {R}}\rightarrow {\mathbb {R}}\ )是满足适当条件的连续函数。最后,我们提供了一个例子。
where \(\beta \in (0,\frac{1}{2})\), \({_{-\infty }}D_{x}^{\beta }u(\cdot ), {_{x}}D_{\infty }^{\beta }u(\cdot )\) denote the left and right Liouville–Weyl fractional derivatives, \(\omega ,Q:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a positive function with \(\omega ,Q\in L^{\frac{1}{2\beta }} ({\mathbb {R}})\) and \(g: {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function satisfying suitable conditions. Finally, an example is provided.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.