通过变分的分数欧几里得玻色方程

Pub Date : 2024-05-03 DOI:10.1007/s11868-024-00611-4
Nemat Nyamoradi, J. Vanterler da C. Sousa
{"title":"通过变分的分数欧几里得玻色方程","authors":"Nemat Nyamoradi, J. Vanterler da C. Sousa","doi":"10.1007/s11868-024-00611-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} {_{x}}D_{\\infty }^{\\beta }{_{-\\infty }}D_{x}^{\\beta }e^{C {_{x}}D_{\\infty }^{\\beta }{_{-\\infty }}D_{x}^{\\beta }}u = \\lambda \\omega (x)u+ Q(x)g(x,u)&amp;{}\\text{ in }\\,\\,{\\mathbb {R}},\\\\ u\\in \\mathcal {H}_c^{\\beta ,\\infty } ({\\mathbb {R}}), \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(\\beta \\in (0,\\frac{1}{2})\\)</span>, <span>\\({_{-\\infty }}D_{x}^{\\beta }u(\\cdot ), {_{x}}D_{\\infty }^{\\beta }u(\\cdot )\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\(\\omega ,Q:{\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is a positive function with <span>\\(\\omega ,Q\\in L^{\\frac{1}{2\\beta }} ({\\mathbb {R}})\\)</span> and <span>\\(g: {\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is a continuous function satisfying suitable conditions. Finally, an example is provided.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Euclidean bosonic equation via variational\",\"authors\":\"Nemat Nyamoradi, J. Vanterler da C. Sousa\",\"doi\":\"10.1007/s11868-024-00611-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} {_{x}}D_{\\\\infty }^{\\\\beta }{_{-\\\\infty }}D_{x}^{\\\\beta }e^{C {_{x}}D_{\\\\infty }^{\\\\beta }{_{-\\\\infty }}D_{x}^{\\\\beta }}u = \\\\lambda \\\\omega (x)u+ Q(x)g(x,u)&amp;{}\\\\text{ in }\\\\,\\\\,{\\\\mathbb {R}},\\\\\\\\ u\\\\in \\\\mathcal {H}_c^{\\\\beta ,\\\\infty } ({\\\\mathbb {R}}), \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\beta \\\\in (0,\\\\frac{1}{2})\\\\)</span>, <span>\\\\({_{-\\\\infty }}D_{x}^{\\\\beta }u(\\\\cdot ), {_{x}}D_{\\\\infty }^{\\\\beta }u(\\\\cdot )\\\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\\\(\\\\omega ,Q:{\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a positive function with <span>\\\\(\\\\omega ,Q\\\\in L^{\\\\frac{1}{2\\\\beta }} ({\\\\mathbb {R}})\\\\)</span> and <span>\\\\(g: {\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a continuous function satisfying suitable conditions. Finally, an example is provided.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00611-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00611-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中我们研究了以下一类带有柳维尔-韦尔分数导数的欧几里得玻色方程的解的存在性 $$\begin{aligned} {\left\{ \begin{array}{ll} {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }e^{C {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }}u = \lambda \omega (x)u+ Q(x)g(x、u)&;{}text{ in }\,{\mathbb {R}},\ u\in \mathcal {H}_c^{\beta ,\infty }({\mathbb {R}}), (end{array}/right.}\end{aligned}$$where \(\beta \in (0,\frac{1}{2})\),\({_{-\infty }}D_{x}^{\beta }u(\cdot ), {_{x}}D_{\infty }^{\beta }u(\cdot )\) denote the left and right Liouville-Weyl fractional derivatives, \(\omega ,Q.) denote the left and right Liouville-Weyl fractional derivatives:{是一个正函数,在 L^{frac{1}{2\beta }} ({\mathbb {R}} 中有({\mathbb {R}})\) 和 (g: {\mathbb {R}}\rightarrow {\mathbb {R}}\ )是满足适当条件的连续函数。最后,我们提供了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fractional Euclidean bosonic equation via variational

In this paper, we study the existence of solutions for the following class of Euclidean bosonic equations with Liouville–Weyl fractional derivatives

$$\begin{aligned} {\left\{ \begin{array}{ll} {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }e^{C {_{x}}D_{\infty }^{\beta }{_{-\infty }}D_{x}^{\beta }}u = \lambda \omega (x)u+ Q(x)g(x,u)&{}\text{ in }\,\,{\mathbb {R}},\\ u\in \mathcal {H}_c^{\beta ,\infty } ({\mathbb {R}}), \end{array}\right. } \end{aligned}$$

where \(\beta \in (0,\frac{1}{2})\), \({_{-\infty }}D_{x}^{\beta }u(\cdot ), {_{x}}D_{\infty }^{\beta }u(\cdot )\) denote the left and right Liouville–Weyl fractional derivatives, \(\omega ,Q:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a positive function with \(\omega ,Q\in L^{\frac{1}{2\beta }} ({\mathbb {R}})\) and \(g: {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function satisfying suitable conditions. Finally, an example is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信