Bakhodir Shodikulov , Mirjavokhir Mirov , Farruh Atamurotov , Sushant G. Ghosh , Ahmadjon Abdujabbarov
{"title":"Impact of Kalb–Ramond fields and perfect fluid dark matter on black hole shadows and gravitational lensing","authors":"Bakhodir Shodikulov , Mirjavokhir Mirov , Farruh Atamurotov , Sushant G. Ghosh , Ahmadjon Abdujabbarov","doi":"10.1016/j.dark.2025.102096","DOIUrl":"10.1016/j.dark.2025.102096","url":null,"abstract":"<div><div>We study the shadow and gravitational lensing features of static, spherically symmetric black holes in the presence of a Kalb–Ramond (KR) field and perfect fluid dark matter (PFDM). The KR field, derived from string theory, has a Lorentz-violating parameter <span><math><mi>a</mi></math></span>, whereas PFDM is defined by the density parameter <span><math><mi>β</mi></math></span>. The resulting KR-PFDM metric modifies null geodesics, photon spheres, and related observables. We analyze photon motion in vacuum and in dispersive plasma environments, considering homogeneous, singular isothermal sphere (SIS), and non-singular isothermal sphere (NSIS) plasma profiles. The numerical results show that, in vacuum, increasing <span><math><mi>a</mi></math></span> from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 reduces the photon sphere radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>3.00<!--> <span><math><mi>M</mi></math></span> to <span><math><mo>∼</mo></math></span>2.85<!--> <span><math><mi>M</mi></math></span> for fixed <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>, while raising <span><math><mi>β</mi></math></span> from 0.1 to 0.3 in <span><math><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> reduces <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> by <span><math><mrow><mo>≈</mo><mn>5</mn><mtext>%</mtext></mrow></math></span>. Consequently, the shadow radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> decreases by up to 10% for the same parameter variations. In a homogeneous plasma with <span><math><mrow><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, the shadow radius is smaller by <span><math><mo>∼</mo></math></span>15% compared to vacuum. Weak lensing analysis shows that for an impact parameter <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mi>M</mi></mrow></math></span>, the deflection angle <span><math><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> decreases from <span><math><mo>∼</mo></math></span>1.2 rad to <span><math><mo>∼</mo></math></span>0.9 rad as <span><math><mi>a</mi></math></span> increases from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 in a uniform plasma, with SIS and NSIS profiles producing progressively smaller deflections. The magnifications of the images drop by <span><math><mo>∼</mo></math></span>8% as <span><math><mi>β</mi></math></span> increases from 0.1 to 0.3, while the larger <span><math><mi>a</mi></math></span> slightly enhances the magnification. Our results demonstrate that both L","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102096"},"PeriodicalIF":6.4,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulmohsen Daham Alruwaili , Shamaila Rani , Abdul Jawad
{"title":"Dynamical stability analysis of modified gravity with various interactions","authors":"Abdulmohsen Daham Alruwaili , Shamaila Rani , Abdul Jawad","doi":"10.1016/j.dark.2025.102097","DOIUrl":"10.1016/j.dark.2025.102097","url":null,"abstract":"<div><div>This study investigates the dynamical stability of cosmological models within the special case of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity, a modified theory of gravity where non-metricity <span><math><mi>Q</mi></math></span> governs gravitational interactions. We analyze the phase space dynamics of a flat Friedmann–Robertson–Walker (FRW) universe, incorporating three distinct non-linear interaction models between dark energy and dark matter: <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>b</mi><mi>q</mi><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>b</mi><mi>q</mi><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mfrac><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>ξ</mi><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>exp</mo><mfenced><mrow><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></mfenced></mrow></math></span>. By deriving autonomous dynamical equations and evaluating critical points, we assess their stability through eigenvalue analysis. The first two models exhibit stable attractor behavior in the quintessence phase for both dust (<span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>) and radiation (<span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span>) scenarios, with all eigenvalues being negative. The third model demonstrates stability across phantom, <span><math><mi>Λ</mi></math></span>CDM, and quintessence phases, with critical points consistently converging to equilibrium states. Our results highlight the role of non-linear interactions in shaping cosmic evolution, offering viable alternatives to explain late-tim","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102097"},"PeriodicalIF":6.4,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Koussour , Alnadhief H.A. Alfedeel , S. Muminov , J. Rayimbaev
{"title":"Constraining a generalized ΛCDM model with cosmic chronometers, supernovae, and DESI BAO data","authors":"M. Koussour , Alnadhief H.A. Alfedeel , S. Muminov , J. Rayimbaev","doi":"10.1016/j.dark.2025.102098","DOIUrl":"10.1016/j.dark.2025.102098","url":null,"abstract":"<div><div>We investigate a generalized <span><math><mi>Λ</mi></math></span>CDM cosmological model defined by a modified expansion rate given by <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msqrt><mrow><mi>α</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></mrow></msqrt></mrow></math></span>, where the additional parameter <span><math><mi>n</mi></math></span> governs the redshift dependence of the matter contribution. We perform a comprehensive statistical analysis using progressively richer observational datasets, including cosmic chronometers (CC), the PantheonPlus and SH0ES supernova samples (PP+SH0ES), and DESI BAO measurements. The resulting posterior constraints demonstrate that adding late-time probes systematically tightens the allowed parameter ranges and shifts the best-fit <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> toward the local SH0ES estimate, while remaining consistent with CC constraints. We find that the generalized <span><math><mi>Λ</mi></math></span>CDM model provides excellent agreement with both <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> and distance modulus data, yielding reduced <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mtext>red</mtext></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> values close to unity across all dataset combinations. Information criteria (AIC and BIC) analyses show weak support for the additional parameter with CC alone but strong evidence for its inclusion when PP+SH0ES and DESI data are combined. The evolution of key dynamical quantities, such as the energy density, deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, and total equation of state (EoS) <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, further confirms the model’s physical viability, with present-day values of <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>563</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>709</mn></mrow></math></span>, indicating a mildly accelerating universe.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102098"},"PeriodicalIF":6.4,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naba Jyoti Gogoi , Dhruba Jyoti Gogoi , Jyatsnasree Bora
{"title":"Topology of 5-dimensional Einstein–Gauss–Bonnet AdS black hole thermodynamics surrounded by a cloud of Strings","authors":"Naba Jyoti Gogoi , Dhruba Jyoti Gogoi , Jyatsnasree Bora","doi":"10.1016/j.dark.2025.102099","DOIUrl":"10.1016/j.dark.2025.102099","url":null,"abstract":"<div><div>We present a topological analysis of five-dimensional Einstein–Gauss–Bonnet (EGB) AdS black holes surrounded by a cloud of strings, employing Duan’s topological current <span><math><mi>ϕ</mi></math></span>-mapping theory to classify thermodynamic critical points in a parameter-independent manner. We used two different approaches respectively considering Duan’s potential and the generalized potential. Our results demonstrate that the sign of the Gauss–Bonnet coupling constant <span><math><mi>α</mi></math></span> fundamentally determines the topology of the thermodynamic state space: <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> yields a single critical point with topological charge <span><math><mrow><mo>+</mo><mn>1</mn></mrow></math></span>, while <span><math><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></math></span> produces two critical points with opposite charges <span><math><mrow><mo>(</mo><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>, giving a total charge of zero. The string cloud parameter <span><math><mi>a</mi></math></span> influences the positions of these critical points but leaves their topological charges unchanged, clearly distinguishing the roles of higher-curvature corrections and surrounding matter fields. Moreover, on considering the generalized potential, results shows topological number <span><math><mrow><mi>W</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>W</mi><mo>=</mo><mn>0</mn><mtext>or</mtext><mo>+</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></math></span> indicating the clear influence of the Gauss–Bonnet coupling constant <span><math><mi>a</mi></math></span> in the topological thermodynamic classification. This framework offers a universal classification scheme for black hole thermodynamics and provides deeper insight into how modified gravity and external matter distributions shape the underlying topological structure.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102099"},"PeriodicalIF":6.4,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding dark matter admixed neutron stars: From static structure to rotational deformation","authors":"Pinku Routaray , Abirbhav Chakrawarty , N.K. Patra , Bharat Kumar","doi":"10.1016/j.dark.2025.102093","DOIUrl":"10.1016/j.dark.2025.102093","url":null,"abstract":"<div><div>In this study, we investigate the impacts of dark matter (DM) on the properties of both static and rotating neutron stars utilizing a self-interacting DM model, motivated by the neutron decay anomaly. DM-admixed NSs are modeled by assuming chemical equilibrium between ordinary matter and the dark sector, treating a single-fluid Tolman–Oppenheimer–Volkoff (TOV) framework. By treating the DM interaction strength (<span><math><mi>G</mi></math></span>) as a free parameter, we explore its influence on NS properties, considering a broad range of equations of state (EoSs). Using the mass–radius constraints from NICER pulsar measurements, we constrain the DM interaction strength for each EoS via a likelihood analysis. Extending this model to rotating NSs, we analyze how centrifugal forces associated with increasing angular velocity (<span><math><mi>Ω</mi></math></span>) enhance both mass and radius, causing deformation. We assess the impact of DM on rotational deformation by calculating the eccentricity, highlighting the interplay between DM and rotational forces. Since both DM and rotation simultaneously influence NS properties, we compute the relative changes in mass and radius across varying <span><math><mi>G</mi></math></span> and <span><math><mi>Ω</mi></math></span> values to quantify their combined effects.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102093"},"PeriodicalIF":6.4,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From matter density to deflection angle and gravitational lensing using a perturbative method","authors":"Peiran Liu , Xiaotian Zhang , Junji Jia","doi":"10.1016/j.dark.2025.102095","DOIUrl":"10.1016/j.dark.2025.102095","url":null,"abstract":"<div><div>In this work, we develop a perturbative method to compute the deflection angles of null or timelike signals in spacetimes filled with a static and spherically symmetric (SSS) perfect fluid with fairly arbitrary density distributions. After solving the Tolman–Oppenheimer–Volkoff equations, the metric functions of the spacetime are obtained either as asymptotic series or as expansions around a finite boundary. The deflection angles of null or timelike signals in the weak-field limit in such spacetimes can then be expressed as series expansions in terms of the impact parameter, with coefficients determined by the metric expansions and, in turn, by the density distribution function. Gravitational lensing equations are also solved perturbatively to derive the apparent angles of the lensed images. Comparing our perturbative formulas with numerical results demonstrates the validity and efficiency of our method and results. This procedure establishes a direct connection between the mass density, the deflection angles, and the apparent angles of gravitationally lensed images. We apply these methods and results to the generalized Navarro–Frenk–White model and some other density profiles to analyze the influence of the density parameters.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102095"},"PeriodicalIF":6.4,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Traversable wormholes in non-minimal Einstein–Yang–Mills gravity: Geometry, energy conditions, and gravitational lensing","authors":"Jureeporn Yuennan , Allah Ditta , Thammarong Eadkhong , Phongpichit Channuie","doi":"10.1016/j.dark.2025.102091","DOIUrl":"10.1016/j.dark.2025.102091","url":null,"abstract":"<div><div>This work presents a new class of static, spherically symmetric traversable wormhole solutions within the framework of non-minimal Einstein–Yang–Mills (EYM) gravity, where the SU(2) Yang–Mills field is purely magnetic. By adopting a constant redshift function and introducing a direct coupling between the Ricci scalar and the Yang–Mills field strength, we investigate the role of the non-minimal coupling constant <span><math><mi>ξ</mi></math></span> and the magnetic charge <span><math><mi>Q</mi></math></span> in shaping the wormhole geometry. Our analysis shows that for small values of <span><math><mi>ξ</mi></math></span>, the flare-out and throat conditions can be satisfied, allowing physically viable traversable wormholes without requiring externally introduced exotic matter. The Arnowitt–Deser–Misner (ADM) mass is evaluated, revealing that for <span><math><mrow><mi>ξ</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span> it grows monotonically with charge, whereas for <span><math><mrow><mi>ξ</mi><mo>≳</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span> it decreases with increasing charge, signaling a reduction in the total mass-energy of the system. An examination of the energy conditions indicates localized violations of the null and weak energy conditions at the throat, while the strong energy condition remains satisfied. Finally, the study of gravitational lensing confirms that the deflection angle of light is consistently positive, reflecting the overall attractive nature of the wormhole’s gravitational field. These results highlight the significant role of non-minimal gauge–gravity couplings in enabling traversable wormholes with distinct observational signatures.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102091"},"PeriodicalIF":6.4,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"f(Q,Lm) gravity, and its cosmological implications","authors":"Ayush Hazarika , Simran Arora , P.K. Sahoo , Tiberiu Harko","doi":"10.1016/j.dark.2025.102092","DOIUrl":"10.1016/j.dark.2025.102092","url":null,"abstract":"<div><div>Symmetric teleparallel gravity and its <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> extensions have emerged as promising alternatives to General Relativity (GR), yet the role of explicit geometry–matter couplings remains largely unexplored. In this work, we address this gap by proposing a generalized <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> theory, where the gravitational Lagrangian density depends on both the non-metricity scalar <span><math><mi>Q</mi></math></span> and the matter Lagrangian <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. This formulation naturally includes Coincident GR and the Symmetric Teleparallel Equivalent of GR as special cases. Working in the metric formalism, we derive the corresponding field equations, which generalize those of the standard <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity, and obtain the modified Klein–Gordon equation for scenarios involving scalar fields. The cosmological implications of the theory are explored in the context of the Friedmann–Lemaître–Robertson–Walker (FLRW) universe. As a first step, we obtain the modified Friedmann equations for <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity in full generality. We then investigate specific cosmological models arising from both linear and non-linear choices of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, performing detailed comparisons with the standard <span><math><mi>Λ</mi></math></span>CDM scenario and examining their observational consequences.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102092"},"PeriodicalIF":6.4,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring four fermion contact couplings of a dark fermion and an electron at hadron colliders and direct detection experiments","authors":"Kai Ma","doi":"10.1016/j.dark.2025.102090","DOIUrl":"10.1016/j.dark.2025.102090","url":null,"abstract":"<div><div>Both collider searches and direct detections are promising approaches to probe fermionic dark matter. In this paper, we study signatures of four-fermion contact operators involving a dark fermion, an electron, and a quark pair. We show that the mono-electron production channel at hadron colliders can provide strong constraints. Associated productions of a charged electron with a photon/jet and missing energy are also studied. Using current LHC data at <span><math><mrow><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mspace></mspace><mtext>TeV</mtext></mrow></math></span>, the lower bound on the energy scale of the (axial-)vector operator can reach 12 TeV for a massless dark fermion. This can be further improved to about 24 TeV at the HE-LHC with <span><math><mrow><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>25</mn><mspace></mspace><mtext>TeV</mtext></mrow></math></span> and a total luminosity of <span><math><mrow><mn>20</mn><mspace></mspace><msup><mrow><mtext>ab</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. For direct detections, the signal operators can induce <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> decays. For the induced <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> decay, we find that the constraints are weaker than those from collider searches in almost all of the parameter space, and the accessible parameter space has already been excluded by current LHC data. In the case of a relatively heavy dark fermion (a few MeV), the induced <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> decay is more sensitive than collider searches. Despite the advantage of collider searches that a much wider range of dark fermion masses can be investigated, they can also provide complementarity to direct detections.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102090"},"PeriodicalIF":6.4,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From geometry to observation: Gravitational waves and the Raychaudhuri equation","authors":"Sougata Bhunia , Anubhab Dutta , Debashis Gangopadhyay , Goutam Manna","doi":"10.1016/j.dark.2025.102089","DOIUrl":"10.1016/j.dark.2025.102089","url":null,"abstract":"<div><div>Gravitational waves (GWs) are independent of any particular theory of gravity. The universality of this notion is highlighted by the Raychaudhuri equation (RE), which is independent of any theory of gravity and contains the Ricci tensor <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub></math></span> as a key ingredient, thereby connecting spacetime geometry with matter-energy content. Under small metric perturbations, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>∝</mo><mo>□</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub></math></span> is the perturbation, indicating that various gravity theories, via their corresponding <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub></math></span>, produce different gravitational wave equations. In the framework of Einstein’s gravity, this leads to the standard wave equation. This study analyzes a modified form, <em>GW-inspired RE</em>, within the homogeneous and isotropic FLRW background to investigate late-time cosmic acceleration and structure formation. We employ <em>Pantheon+ SNe Ia, Hubble, and BAO</em> datasets to constrain model parameters through Bayesian inference utilizing NUTS in <em>NumPyro</em>. A nuisance parameter <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is introduced to address residual systematics. This facilitates a robust estimation of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi><mi>E</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>, which addresses the resolution of the Hubble tension. We analyze the redshift evolution of the deceleration parameter, <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, both with and without <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, emphasizing its influence on cosmic dynamics. The GW-inspired RE is reformulated as a harmonic oscillator, providing insight into expansion and geodesic focusing. A graphical comparison demonstrates the relationship <span><math><mrow><msubsup><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>G</mi><mi>W</mi></mrow></msubsup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>E</mi><mi>M</mi></mrow></msubsup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> utilizing GWOSC data. Thus, the RE in the context of small perturbation of the metric opens up whole new vistas of <em>observational astronomy.</em></div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102089"},"PeriodicalIF":6.4,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}