微波背景绝热冷却的回弹性及其意义

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Ruchika , William Giarè , Elsa M. Teixeira , Alessandro Melchiorri
{"title":"微波背景绝热冷却的回弹性及其意义","authors":"Ruchika ,&nbsp;William Giarè ,&nbsp;Elsa M. Teixeira ,&nbsp;Alessandro Melchiorri","doi":"10.1016/j.dark.2025.101999","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate potential deviations from the standard adiabatic evolution of the cosmic microwave background (CMB) temperature, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, using the latest Sunyaev-Zeldovich (SZ) effect measurements and molecular line excitation data, covering a combined redshift range of <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>z</mi><mo>≲</mo><mn>6</mn></mrow></math></span>. We follow different approaches. First, we reconstruct the redshift evolution of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in a model-independent way using Gaussian Process regression. The tightest constraints come from SZ measurements at <span><math><mrow><mi>z</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, while molecular line data at <span><math><mrow><mi>z</mi><mo>&gt;</mo><mn>3</mn></mrow></math></span> yield broader uncertainties. By combining both datasets, we find good consistency with the standard evolution across the full analysed redshift range, inferring a present-day CMB monopole temperature of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>744</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>019</mn></mrow></math></span> K. Next, we test for deviations from the standard scaling by adopting the parametrisation <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>β</mi></mrow></msup></mrow></math></span>, where <span><math><mi>β</mi></math></span> quantifies departures from adiabaticity, with <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> corresponding to the standard scenario. In this framework, we use Gaussian Process reconstruction to test the consistency of <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> across the full redshift range and perform <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> minimisation techniques to determine the best-fit values of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>β</mi></math></span>. In both cases, we find good consistency with the standard temperature-redshift relation. The <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimisation analysis yields best-fit values of <span><math><mrow><mi>β</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0106</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0124</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>7276</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0095</mn></mrow></math></span> K, in excellent agreement with both <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> and independent direct measurements of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> from FIRAS and ARCADE. We discuss the implications of our findings, which offer strong empirical support for the standard cosmological prediction and place tight constraints on a wide range of alternative scenarios of interest in the context of cosmological tensions and fundamental physics.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 101999"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience and implications of adiabatic CMB cooling\",\"authors\":\"Ruchika ,&nbsp;William Giarè ,&nbsp;Elsa M. Teixeira ,&nbsp;Alessandro Melchiorri\",\"doi\":\"10.1016/j.dark.2025.101999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate potential deviations from the standard adiabatic evolution of the cosmic microwave background (CMB) temperature, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, using the latest Sunyaev-Zeldovich (SZ) effect measurements and molecular line excitation data, covering a combined redshift range of <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>z</mi><mo>≲</mo><mn>6</mn></mrow></math></span>. We follow different approaches. First, we reconstruct the redshift evolution of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in a model-independent way using Gaussian Process regression. The tightest constraints come from SZ measurements at <span><math><mrow><mi>z</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, while molecular line data at <span><math><mrow><mi>z</mi><mo>&gt;</mo><mn>3</mn></mrow></math></span> yield broader uncertainties. By combining both datasets, we find good consistency with the standard evolution across the full analysed redshift range, inferring a present-day CMB monopole temperature of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>744</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>019</mn></mrow></math></span> K. Next, we test for deviations from the standard scaling by adopting the parametrisation <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>β</mi></mrow></msup></mrow></math></span>, where <span><math><mi>β</mi></math></span> quantifies departures from adiabaticity, with <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> corresponding to the standard scenario. In this framework, we use Gaussian Process reconstruction to test the consistency of <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> across the full redshift range and perform <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> minimisation techniques to determine the best-fit values of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>β</mi></math></span>. In both cases, we find good consistency with the standard temperature-redshift relation. The <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimisation analysis yields best-fit values of <span><math><mrow><mi>β</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0106</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0124</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>7276</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0095</mn></mrow></math></span> K, in excellent agreement with both <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> and independent direct measurements of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> from FIRAS and ARCADE. We discuss the implications of our findings, which offer strong empirical support for the standard cosmological prediction and place tight constraints on a wide range of alternative scenarios of interest in the context of cosmological tensions and fundamental physics.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"49 \",\"pages\":\"Article 101999\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221268642500192X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221268642500192X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用最新的Sunyaev-Zeldovich (SZ)效应测量和分子线激发数据,研究了宇宙微波背景(CMB)温度(TCMB(z))的标准绝热演化的潜在偏差,覆盖了0<;z≤6的组合红移范围。我们采用不同的方法。首先,我们利用高斯过程回归以模型无关的方式重建了TCMB(z)的红移演化。最严格的约束来自z<;1的SZ测量,而z>;3的分子线数据产生更广泛的不确定性。通过结合这两个数据集,我们发现在整个分析红移范围内与标准演化具有良好的一致性,推断出当今CMB单极子温度为T0=2.744±0.019 K。接下来,我们通过采用参数化TCMB(z)=T0(1+z)1 - β来测试与标准尺度的偏差,其中β量化了与绝热的偏离,β=0对应于标准情景。在这个框架中,我们使用高斯过程重建来测试β=0在整个红移范围内的一致性,并执行χ2最小化技术来确定T0和β的最佳拟合值。在这两种情况下,我们发现与标准的温度-红移关系有很好的一致性。χ2最小化分析的最佳拟合值为β= - 0.0106±0.0124和T0=2.7276±0.0095 K,与β=0和FIRAS和ARCADE对T0的独立直接测量结果非常吻合。我们讨论了我们的发现的意义,这些发现为标准宇宙学预测提供了强有力的经验支持,并在宇宙学张力和基础物理学的背景下对广泛的可选场景施加了严格的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience and implications of adiabatic CMB cooling
We investigate potential deviations from the standard adiabatic evolution of the cosmic microwave background (CMB) temperature, TCMB(z), using the latest Sunyaev-Zeldovich (SZ) effect measurements and molecular line excitation data, covering a combined redshift range of 0<z6. We follow different approaches. First, we reconstruct the redshift evolution of TCMB(z) in a model-independent way using Gaussian Process regression. The tightest constraints come from SZ measurements at z<1, while molecular line data at z>3 yield broader uncertainties. By combining both datasets, we find good consistency with the standard evolution across the full analysed redshift range, inferring a present-day CMB monopole temperature of T0=2.744±0.019 K. Next, we test for deviations from the standard scaling by adopting the parametrisation TCMB(z)=T0(1+z)1β, where β quantifies departures from adiabaticity, with β=0 corresponding to the standard scenario. In this framework, we use Gaussian Process reconstruction to test the consistency of β=0 across the full redshift range and perform χ2 minimisation techniques to determine the best-fit values of T0 and β. In both cases, we find good consistency with the standard temperature-redshift relation. The χ2-minimisation analysis yields best-fit values of β=0.0106±0.0124 and T0=2.7276±0.0095 K, in excellent agreement with both β=0 and independent direct measurements of T0 from FIRAS and ARCADE. We discuss the implications of our findings, which offer strong empirical support for the standard cosmological prediction and place tight constraints on a wide range of alternative scenarios of interest in the context of cosmological tensions and fundamental physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信