{"title":"试图用可复化奇点来规避里奇逆不去定理:一个涌现的暗能量模型","authors":"Mattia Scomparin","doi":"10.1016/j.dark.2025.102002","DOIUrl":null,"url":null,"abstract":"<div><div>Ricci-inverse gravity is a new type of fourth-order gravity theory based on the anti-curvature tensor, that is, the inverse of the Ricci tensor. In this context, we introduce a novel method to circumvent the binding effects of a well-known no-go theorem for cosmic trajectories that cannot smoothly join a decelerated cosmic age with the current accelerated expansion of the universe. We therefore design an emergent class of Ricci-inverse theories whose cosmologies, without falling into no-go singularities, achieve the observed expansion as a stable attractor solution. This new perspective retrains Ricci-inverse cosmologies as viable dark energy models.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 102002"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attempting to circumvent the Ricci-inverse no-go theorem with complexifiable singularities: An emergent Dark Energy model\",\"authors\":\"Mattia Scomparin\",\"doi\":\"10.1016/j.dark.2025.102002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ricci-inverse gravity is a new type of fourth-order gravity theory based on the anti-curvature tensor, that is, the inverse of the Ricci tensor. In this context, we introduce a novel method to circumvent the binding effects of a well-known no-go theorem for cosmic trajectories that cannot smoothly join a decelerated cosmic age with the current accelerated expansion of the universe. We therefore design an emergent class of Ricci-inverse theories whose cosmologies, without falling into no-go singularities, achieve the observed expansion as a stable attractor solution. This new perspective retrains Ricci-inverse cosmologies as viable dark energy models.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"49 \",\"pages\":\"Article 102002\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425001955\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425001955","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Attempting to circumvent the Ricci-inverse no-go theorem with complexifiable singularities: An emergent Dark Energy model
Ricci-inverse gravity is a new type of fourth-order gravity theory based on the anti-curvature tensor, that is, the inverse of the Ricci tensor. In this context, we introduce a novel method to circumvent the binding effects of a well-known no-go theorem for cosmic trajectories that cannot smoothly join a decelerated cosmic age with the current accelerated expansion of the universe. We therefore design an emergent class of Ricci-inverse theories whose cosmologies, without falling into no-go singularities, achieve the observed expansion as a stable attractor solution. This new perspective retrains Ricci-inverse cosmologies as viable dark energy models.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.