Dynamical analysis of quantum matter bounces with dark sector mimickers

IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Francisco Bento Lustosa, Nelson Pinto-Neto
{"title":"Dynamical analysis of quantum matter bounces with dark sector mimickers","authors":"Francisco Bento Lustosa,&nbsp;Nelson Pinto-Neto","doi":"10.1016/j.dark.2025.102013","DOIUrl":null,"url":null,"abstract":"<div><div>We study the effects of the inclusion of fluids In bounce scenarios driven by an exponential potential scalar field. Most solutions exhibit well known tracking behavior between the fluids and the scalar field. This tracking behavior can model transitions between different phases of cosmic evolution. We will focus on an interesting bouncing model with a dust matter fluid, where the scalar field can drive an early dark energy expanding period with a radiation-like dominated phase just after it, and then tracks the dust matter fluid with energy density compatible with the dark matter energy density. The model is dust dominated in the far past of the contracting phase, and has stiff matter behavior when approaching the singularity, allowing well known quantum bounce transitions to the expanding era. Hence, it is a quantum matter bounce scenario with an inflationary phase together with a smooth transition through a radiation era to matter domination with a possible scalar field dark matter candidate.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 102013"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002067","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the effects of the inclusion of fluids In bounce scenarios driven by an exponential potential scalar field. Most solutions exhibit well known tracking behavior between the fluids and the scalar field. This tracking behavior can model transitions between different phases of cosmic evolution. We will focus on an interesting bouncing model with a dust matter fluid, where the scalar field can drive an early dark energy expanding period with a radiation-like dominated phase just after it, and then tracks the dust matter fluid with energy density compatible with the dark matter energy density. The model is dust dominated in the far past of the contracting phase, and has stiff matter behavior when approaching the singularity, allowing well known quantum bounce transitions to the expanding era. Hence, it is a quantum matter bounce scenario with an inflationary phase together with a smooth transition through a radiation era to matter domination with a possible scalar field dark matter candidate.
暗扇区模拟器对量子物质弹跳的动力学分析
我们研究了在指数势标量场驱动的弹跳情况下流体包裹体的影响。大多数解在流体和标量场之间表现出众所周知的跟踪行为。这种跟踪行为可以模拟宇宙演化不同阶段之间的过渡。我们将重点关注一个有趣的尘埃物质流体弹跳模型,其中标量场可以驱动早期暗能量膨胀期,之后是类似辐射的主导阶段,然后跟踪能量密度与暗物质能量密度相容的尘埃物质流体。该模型在遥远的收缩阶段以尘埃为主,在接近奇点时具有刚性物质行为,允许众所周知的量子弹跳过渡到膨胀时代。因此,这是一个量子物质弹跳的场景,伴随着暴胀阶段,以及通过辐射时代到物质统治的平稳过渡,可能存在标量场暗物质候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信