Ruchika , William Giarè , Elsa M. Teixeira , Alessandro Melchiorri
{"title":"Resilience and implications of adiabatic CMB cooling","authors":"Ruchika , William Giarè , Elsa M. Teixeira , Alessandro Melchiorri","doi":"10.1016/j.dark.2025.101999","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate potential deviations from the standard adiabatic evolution of the cosmic microwave background (CMB) temperature, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, using the latest Sunyaev-Zeldovich (SZ) effect measurements and molecular line excitation data, covering a combined redshift range of <span><math><mrow><mn>0</mn><mo><</mo><mi>z</mi><mo>≲</mo><mn>6</mn></mrow></math></span>. We follow different approaches. First, we reconstruct the redshift evolution of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in a model-independent way using Gaussian Process regression. The tightest constraints come from SZ measurements at <span><math><mrow><mi>z</mi><mo><</mo><mn>1</mn></mrow></math></span>, while molecular line data at <span><math><mrow><mi>z</mi><mo>></mo><mn>3</mn></mrow></math></span> yield broader uncertainties. By combining both datasets, we find good consistency with the standard evolution across the full analysed redshift range, inferring a present-day CMB monopole temperature of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>744</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>019</mn></mrow></math></span> K. Next, we test for deviations from the standard scaling by adopting the parametrisation <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>β</mi></mrow></msup></mrow></math></span>, where <span><math><mi>β</mi></math></span> quantifies departures from adiabaticity, with <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> corresponding to the standard scenario. In this framework, we use Gaussian Process reconstruction to test the consistency of <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> across the full redshift range and perform <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> minimisation techniques to determine the best-fit values of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>β</mi></math></span>. In both cases, we find good consistency with the standard temperature-redshift relation. The <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimisation analysis yields best-fit values of <span><math><mrow><mi>β</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0106</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0124</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>7276</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0095</mn></mrow></math></span> K, in excellent agreement with both <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span> and independent direct measurements of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> from FIRAS and ARCADE. We discuss the implications of our findings, which offer strong empirical support for the standard cosmological prediction and place tight constraints on a wide range of alternative scenarios of interest in the context of cosmological tensions and fundamental physics.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 101999"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221268642500192X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate potential deviations from the standard adiabatic evolution of the cosmic microwave background (CMB) temperature, , using the latest Sunyaev-Zeldovich (SZ) effect measurements and molecular line excitation data, covering a combined redshift range of . We follow different approaches. First, we reconstruct the redshift evolution of in a model-independent way using Gaussian Process regression. The tightest constraints come from SZ measurements at , while molecular line data at yield broader uncertainties. By combining both datasets, we find good consistency with the standard evolution across the full analysed redshift range, inferring a present-day CMB monopole temperature of K. Next, we test for deviations from the standard scaling by adopting the parametrisation , where quantifies departures from adiabaticity, with corresponding to the standard scenario. In this framework, we use Gaussian Process reconstruction to test the consistency of across the full redshift range and perform minimisation techniques to determine the best-fit values of and . In both cases, we find good consistency with the standard temperature-redshift relation. The -minimisation analysis yields best-fit values of and K, in excellent agreement with both and independent direct measurements of from FIRAS and ARCADE. We discuss the implications of our findings, which offer strong empirical support for the standard cosmological prediction and place tight constraints on a wide range of alternative scenarios of interest in the context of cosmological tensions and fundamental physics.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.