{"title":"Approximate Deconvolution with Correction – A High Fidelity Model for Magnetohydrodynamic Flows at High Reynolds and Magnetic Reynolds Numbers","authors":"Yasasya Batugedara, A. Labovsky","doi":"10.1515/cmam-2022-0254","DOIUrl":"https://doi.org/10.1515/cmam-2022-0254","url":null,"abstract":"Abstract We propose a model for magnetohydrodynamic flows at high Reynolds and magnetic Reynolds numbers. The system is written in the Elsässer variables so that the decoupling method of [C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett. 27 (2014), 97–100] can be used. This decoupling method is only first-order accurate, so the proposed model aims at improving the temporal accuracy (from first to second order), as well as reducing the modeling error of the existing turbulence model. This is done in the framework of the recently developed LES-C turbulence models [A. E. Labovsky, Approximate deconvolution with correction: A member of a new class of models for high Reynolds number flows, SIAM J. Numer. Anal. 58 (2020), 5, 3068–3090]. We show the model to be unconditionally stable and numerically verify its superiority over its most natural competitor.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46560727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Adaptive Two-Grid Solver for DPG Formulation of Compressible Navier–Stokes Equations in 3D","authors":"W. Rachowicz, W. Cecot, A. Zdunek","doi":"10.1515/cmam-2022-0206","DOIUrl":"https://doi.org/10.1515/cmam-2022-0206","url":null,"abstract":"Abstract We present an overlapping domain decomposition iterative solver for linear systems resulting from the discretization of compressible viscous flows with the Discontinuous Petrov–Galerkin (DPG) method in three dimensions. It is a two-grid solver utilizing the solution on the auxiliary coarse grid and the standard block-Jacobi iteration on patches of elements defined by supports of the coarse mesh base shape functions. The simple iteration defined in this way is used as a preconditioner for the conjugate gradient procedure. Theoretical analysis indicates that the condition number of the preconditioned system should be independent of the actual finite element mesh and the auxiliary coarse mesh, provided that they are quasiuniform. Numerical tests confirm this result. Moreover, they show that presence of strongly flattened or elongated elements does not slow the convergence. The finite element mesh is subject to adaptivity, i.e. dividing the elements with large errors until a required accuracy is reached. The auxiliary coarse mesh is adjusting to the nonuniform actual mesh.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42907505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multilevel Extension of the GDSW Overlapping Schwarz Preconditioner in Two Dimensions","authors":"Alexander Heinlein, O. Rheinbach, F. Röver","doi":"10.1515/cmam-2022-0168","DOIUrl":"https://doi.org/10.1515/cmam-2022-0168","url":null,"abstract":"Abstract Multilevel extensions of overlapping Schwarz domain decomposition preconditioners of Generalized Dryja–Smith–Widlund (GDSW) type are considered in this paper. The original GDSW preconditioner is a two-level overlapping Schwarz domain decomposition preconditioner, which can be constructed algebraically from the fully assembled stiffness matrix. The FROSch software, which belongs to the ShyLU package of the Trilinos software library, provides parallel implementations of different variants of GDSW preconditioners. The coarse problem can limit the parallel scalability of two-level GDSW preconditioners. As a remedy, in the past, three-level GDSW approaches have been proposed, which can significantly extend the range of scalability. Here, a multilevel extension of the GDSW preconditioner is introduced and analyzed. Finally, parallel results for the implementation in FROSch for up to 40 000 cores of the SuperMUC-NG supercomputer at Leibniz Supercomputing Centre (LRZ) and to 48 000 cores of the JUWELS supercomputer at Jülich Supercomputing Centre (JSC) are presented.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41837515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous Recovery of Two Time-Dependent Coefficients in a Multi-Term Time-Fractional Diffusion Equation","authors":"Wenjun Ma, Liangliang Sun","doi":"10.1515/cmam-2022-0210","DOIUrl":"https://doi.org/10.1515/cmam-2022-0210","url":null,"abstract":"Abstract This paper deals with an inverse problem on simultaneously determining a time-dependent potential term and a time source function from two-point measured data in a multi-term time-fractional diffusion equation. First we study the existence, uniqueness and some regularities of the solution for the direct problem by using the fixed point theorem. Then a nice conditional stability estimate of inversion coefficients problem is obtained based on the regularity of the solution to the direct problem and a fine property of the Caputo fractional derivative. In addition, the ill-posedness of the inverse problem is illustrated and we transfer the inverse problem into a variational problem. Moreover, the existence and convergence of the minimizer for the variational problem are given. Finally, we use a modified Levenberg–Marquardt method to reconstruct numerically the approximate functions of two unknown time-dependent coefficients effectively. Numerical experiments for three examples in one- and two-dimensional cases are provided to show the validity and robustness of the proposed method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46865801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well-Posedness and Convergence Analysis of PML Method for Time-Dependent Acoustic Scattering Problems Over a Locally Rough Surface","authors":"Hongxia Guo, Guanghui Hu","doi":"10.1515/cmam-2023-0017","DOIUrl":"https://doi.org/10.1515/cmam-2023-0017","url":null,"abstract":"We aim to analyze and calculate time-dependent acoustic wave scattering by a bounded obstacle and a locally perturbed non-selfintersecting curve. The scattering problem is equivalently reformulated as an initial-boundary value problem of the wave equation in a truncated bounded domain through a well-defined transparent boundary condition. Well-posedness and stability of the reduced problem are established. Numerically, we adopt the perfect matched layer (PML) scheme for simulating the propagation of perturbed waves. By designing a special absorbing medium in a semi-circular PML, we show the well-posedness and stability of the truncated initial-boundary value problem. Finally, we prove that the PML solution converges exponentially to the exact solution in the physical domain. Numerical results are reported to verify the exponential convergence with respect to absorbing medium parameters and thickness of the PML.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"123 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Acosta, Francisco M. Bersetche, Julio D. Rossi
{"title":"A Domain Decomposition Scheme for Couplings between Local and Nonlocal Equations","authors":"Gabriel Acosta, Francisco M. Bersetche, Julio D. Rossi","doi":"10.1515/cmam-2022-0140","DOIUrl":"https://doi.org/10.1515/cmam-2022-0140","url":null,"abstract":"Abstract We study a natural alternating method of Schwarz type (domain decomposition) for a certain class of couplings between local and nonlocal operators. We show that our method fits into Lions’s framework and prove, as a consequence, convergence in both the continuous and the discrete settings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135090933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Formulation for a Nonlinear Axisymmetric Magneto-Heat Coupling Problem with an Unknown Nonlocal Boundary Condition","authors":"Ran Wang, Huai Zhang, T. Kang","doi":"10.1515/cmam-2022-0093","DOIUrl":"https://doi.org/10.1515/cmam-2022-0093","url":null,"abstract":"Abstract This paper investigates a nonlinear axisymmetric magneto-heat coupling problem described by the quasi-static Maxwell’s equations and a heat equation. The coupling between them is provided through the temperature-dependent electric conductivity. The behavior of the material is defined by an anhysteretic 𝑯-𝑩 curve. The magnetic flux across a meridian section of the medium gives rise to the magnetic field equation with the unknown nonlocal boundary condition. We present a variational formulation for this coupling problem and prove its solvability in terms of the Rothe method. The nonlinearity is handled by the theory of monotone operators. We also suggest a discrete decoupled scheme to solve this problem by employing the finite element method and show some numerical results in the final section.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45803053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Landweber Iterative Method for an Inverse Source Problem of Time-Space Fractional Diffusion-Wave Equation","authors":"Fan Yang, Yan Zhang, Xiao-Xiao Li","doi":"10.1515/cmam-2022-0240","DOIUrl":"https://doi.org/10.1515/cmam-2022-0240","url":null,"abstract":"Abstract In this paper, we apply a Landweber iterative regularization method to determine a space-dependent source for a time-space fractional diffusion-wave equation from the final measurement. In general, this problem is ill-posed, and a Landweber iterative regularization method is used to obtain the regularization solution. Under the a priori parameter choice rule and the a posteriori parameter choice rule, we give the error estimates between the regularization solution and the exact solution, respectively. Some numerical results in the one-dimensional and two-dimensional cases show the utility of the used regularization method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49388099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Discretization Scheme for Solving Nonlinear Ill-Posed Problems","authors":"M. Rajan, J. Jose","doi":"10.1515/cmam-2021-0146","DOIUrl":"https://doi.org/10.1515/cmam-2021-0146","url":null,"abstract":"Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42522485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}