求解非线性不适定问题的一种有效离散化方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
M. Rajan, J. Jose
{"title":"求解非线性不适定问题的一种有效离散化方法","authors":"M. Rajan, J. Jose","doi":"10.1515/cmam-2021-0146","DOIUrl":null,"url":null,"abstract":"Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Discretization Scheme for Solving Nonlinear Ill-Posed Problems\",\"authors\":\"M. Rajan, J. Jose\",\"doi\":\"10.1515/cmam-2021-0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2021-0146\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2021-0146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要基于信息的复杂性分析在求解各种实际问题的计算中具有重要的意义。计算解所需的离散信息量在问题的计算复杂度中起着重要的作用。虽然这种方法已经成功地应用于线性问题,但在文献中还没有努力将其应用于非线性问题。本文通过考虑一种有效的离散化方法来离散非线性不适定问题来解决这一问题。我们在一个简化的高斯-牛顿迭代方法的背景下应用离散化方案,并表明我们的方案只需要少量的信息来计算解。给出了收敛性分析和误差估计。数值算例说明了该方案的可行性。理论和数值研究表明,该格式可用于求解非线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Discretization Scheme for Solving Nonlinear Ill-Posed Problems
Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信