{"title":"A Formulation for a Nonlinear Axisymmetric Magneto-Heat Coupling Problem with an Unknown Nonlocal Boundary Condition","authors":"Ran Wang, Huai Zhang, T. Kang","doi":"10.1515/cmam-2022-0093","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates a nonlinear axisymmetric magneto-heat coupling problem described by the quasi-static Maxwell’s equations and a heat equation. The coupling between them is provided through the temperature-dependent electric conductivity. The behavior of the material is defined by an anhysteretic 𝑯-𝑩 curve. The magnetic flux across a meridian section of the medium gives rise to the magnetic field equation with the unknown nonlocal boundary condition. We present a variational formulation for this coupling problem and prove its solvability in terms of the Rothe method. The nonlinearity is handled by the theory of monotone operators. We also suggest a discrete decoupled scheme to solve this problem by employing the finite element method and show some numerical results in the final section.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper investigates a nonlinear axisymmetric magneto-heat coupling problem described by the quasi-static Maxwell’s equations and a heat equation. The coupling between them is provided through the temperature-dependent electric conductivity. The behavior of the material is defined by an anhysteretic 𝑯-𝑩 curve. The magnetic flux across a meridian section of the medium gives rise to the magnetic field equation with the unknown nonlocal boundary condition. We present a variational formulation for this coupling problem and prove its solvability in terms of the Rothe method. The nonlinearity is handled by the theory of monotone operators. We also suggest a discrete decoupled scheme to solve this problem by employing the finite element method and show some numerical results in the final section.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.