{"title":"A Domain Decomposition Scheme for Couplings between Local and Nonlocal Equations","authors":"Gabriel Acosta, Francisco M. Bersetche, J. Rossi","doi":"10.48550/arXiv.2212.06093","DOIUrl":"https://doi.org/10.48550/arXiv.2212.06093","url":null,"abstract":"Abstract We study a natural alternating method of Schwarz type (domain decomposition) for a certain class of couplings between local and nonlocal operators. We show that our method fits into Lions’s framework and prove, as a consequence, convergence in both the continuous and the discrete settings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45441883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positivity-Preserving Numerical Method for a Stochastic Multi-Group SIR Epidemic Model","authors":"Han Ma, Qimin Zhang, X. Xu","doi":"10.1515/cmam-2022-0143","DOIUrl":"https://doi.org/10.1515/cmam-2022-0143","url":null,"abstract":"Abstract The stochastic multi-group susceptible–infected–recovered (SIR) epidemic model is nonlinear, and so analytical solutions are generally difficult to obtain. Hence, it is often necessary to find numerical solutions, but most existing numerical methods fail to preserve the nonnegativity or positivity of solutions. Therefore, an appropriate numerical method for studying the dynamic behavior of epidemic diseases through SIR models is urgently required. In this paper, based on the Euler–Maruyama scheme and a logarithmic transformation, we propose a novel explicit positivity-preserving numerical scheme for a stochastic multi-group SIR epidemic model whose coefficients violate the global monotonicity condition. This scheme not only results in numerical solutions that preserve the domain of the stochastic multi-group SIR epidemic model, but also achieves the “ order - 1 2 {mathrm{order}-frac{1}{2}} ” strong convergence rate. Taking a two-group SIR epidemic model as an example, some numerical simulations are performed to illustrate the performance of the proposed scheme.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"671 - 694"},"PeriodicalIF":1.3,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42594497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Discontinuous Galerkin Method for a Third-Order Singularly Perturbed Problem of Convection-Diffusion Type","authors":"Li Yan, Zhoufeng Wang, Yao Cheng","doi":"10.1515/cmam-2022-0176","DOIUrl":"https://doi.org/10.1515/cmam-2022-0176","url":null,"abstract":"The local discontinuous Galerkin (LDG) method is studied for a third-order singularly perturbed problem of convection-diffusion type. Based on a regularity assumption for the exact solution, we prove almost <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>O</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>N</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2022-0176_eq_0280.png\" /> <jats:tex-math>{O(N^{-(k+frac{1}{2})})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (up to a logarithmic factor) energy-norm convergence uniformly in the perturbation parameter. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2022-0176_eq_0414.png\" /> <jats:tex-math>{kgeq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximum degree of piecewise polynomials used in discrete space, and <jats:italic>N</jats:italic> is the number of mesh elements. The results are valid for the three types of layer-adapted meshes: Shishkin-type, Bakhvalov–Shishkin-type, and Bakhvalov-type. Numerical experiments are conducted to test the theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138537980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Posteriori Error Estimator for Weak Galerkin Finite Element Method for Stokes Problem Using Diagonalization Techniques","authors":"Jiachuan Zhang, Ran Zhang, Jingzhi Li","doi":"10.1515/cmam-2022-0087","DOIUrl":"https://doi.org/10.1515/cmam-2022-0087","url":null,"abstract":"Abstract Based on a hierarchical basis a posteriori error estimator, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the Stokes problem in two and three dimensions. In this paper, we propose two novel diagonalization techniques for velocity and pressure, respectively. Using diagonalization techniques, we need only to solve two diagonal linear algebraic systems corresponding to the degree of freedom to get the error estimator. The upper bound and lower bound of the error estimator are also shown to address the reliability of the adaptive method. Numerical simulations are provided to demonstrate the effectiveness and robustness of our algorithm.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"783 - 811"},"PeriodicalIF":1.3,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45425406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Time-Adaptive Space-Time FMM for the Heat Equation","authors":"R. Watschinger, G. Of","doi":"10.1515/cmam-2022-0117","DOIUrl":"https://doi.org/10.1515/cmam-2022-0117","url":null,"abstract":"Abstract We present a new time-adaptive FMM for a space-time boundary element method for the heat equation. The method extends the existing parabolic FMM by adding new operations that allow for an efficient treatment of tensor product meshes which are adaptive in time. We analyze the efficiency of the new operations and the approximation quality of the related kernel expansions and present numerical experiments that reveal the benefits of the new method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"445 - 471"},"PeriodicalIF":1.3,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48073717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Cost-Efficient Space-Time Adaptive Algorithm for Coupled Flow and Transport","authors":"Marius Paul Bruchhäuser, M. Bause","doi":"10.48550/arXiv.2212.02954","DOIUrl":"https://doi.org/10.48550/arXiv.2212.02954","url":null,"abstract":"Abstract In this work, a cost-efficient space-time adaptive algorithm based on the Dual Weighted Residual (DWR) method is developed and studied for a coupled model problem of flow and convection-dominated transport. Key ingredients are a multirate approach adapted to varying dynamics in time of the subproblems, weighted and non-weighted error indicators for the transport and flow problem, respectively, and the concept of space-time slabs based on tensor product spaces for the data structure. In numerical examples, the performance of the underlying algorithm is studied for benchmark problems and applications of practical interest. Moreover, the interaction of stabilization and goal-oriented adaptivity is investigated for strongly convection-dominated transport.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42984459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations","authors":"D. Breit, Alan Dodgson","doi":"10.48550/arXiv.2211.17011","DOIUrl":"https://doi.org/10.48550/arXiv.2211.17011","url":null,"abstract":"Abstract We consider the 3D stochastic Navier–Stokes equation on the torus. Our main result concerns the temporal and spatio-temporal discretisation of a local strong pathwise solution. We prove optimal convergence rates for the energy error with respect to convergence in probability, that is convergence of order (up to) 1 in space and of order (up to) 1/2 in time. The result holds up to the possible blow-up of the (time-discrete) solution. Our approach is based on discrete stopping times for the (time-discrete) solution.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47859877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bernoulli Free Boundary Problems Under Uncertainty: The Convex Case","authors":"M. Dambrine, H. Harbrecht, B. Puig","doi":"10.1515/cmam-2022-0038","DOIUrl":"https://doi.org/10.1515/cmam-2022-0038","url":null,"abstract":"Abstract The present article is concerned with solving Bernoulli’s exterior free boundary problem in the case of an interior boundary that is random. We provide a new regularity result on the map that sends a parametrization of the inner boundary to a parametrization of the outer boundary. Moreover, assuming that the interior boundary is convex, also the exterior boundary is convex, which enables to identify the boundaries with support functions and to determine their expectations. We in particular construct a confidence region for the outer boundary based on Aumann’s expectation and provide a numerical method to compute it.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"333 - 352"},"PeriodicalIF":1.3,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41622520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Freese, D. Gallistl, D. Peterseim, Timo Sprekeler
{"title":"Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations","authors":"P. Freese, D. Gallistl, D. Peterseim, Timo Sprekeler","doi":"10.48550/arXiv.2211.13731","DOIUrl":"https://doi.org/10.48550/arXiv.2211.13731","url":null,"abstract":"Abstract This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43778213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite Element Approximations for PDEs with Irregular Dirichlet Boundary Data on Boundary Concentrated Meshes","authors":"J. Pfefferer, M. Winkler","doi":"10.1515/cmam-2022-0129","DOIUrl":"https://doi.org/10.1515/cmam-2022-0129","url":null,"abstract":"Abstract This paper is concerned with finite element error estimates for second order elliptic PDEs with inhomogeneous Dirichlet boundary data in convex polygonal domains. The Dirichlet boundary data are assumed to be irregular such that the solution of the PDE does not belong to H 2 ( Ω ) {H^{2}(Omega)} but only to H r ( Ω ) {H^{r}(Omega)} for some r ∈ ( 1 , 2 ) {rin(1,2)} . As a consequence, a discretization of the PDE with linear finite elements exhibits a reduced convergence rate in L 2 ( Ω ) {L^{2}(Omega)} and H 1 ( Ω ) {H^{1}(Omega)} . In order to restore the best possible convergence rate we propose and analyze in detail the usage of boundary concentrated meshes. These meshes are gradually refined towards the whole boundary. The corresponding grading parameter does not only depend on the regularity of the Dirichlet boundary data and their discrete implementation but also on the norm, which is used to measure the error. In numerical experiments we confirm our theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42712860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}