一类三阶对流扩散型奇摄动问题的局部不连续伽辽金方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Li Yan, Zhoufeng Wang, Yao Cheng
{"title":"一类三阶对流扩散型奇摄动问题的局部不连续伽辽金方法","authors":"Li Yan, Zhoufeng Wang, Yao Cheng","doi":"10.1515/cmam-2022-0176","DOIUrl":null,"url":null,"abstract":"The local discontinuous Galerkin (LDG) method is studied for a third-order singularly perturbed problem of convection-diffusion type. Based on a regularity assumption for the exact solution, we prove almost <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>O</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>N</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2022-0176_eq_0280.png\" /> <jats:tex-math>{O(N^{-(k+\\frac{1}{2})})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (up to a logarithmic factor) energy-norm convergence uniformly in the perturbation parameter. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2022-0176_eq_0414.png\" /> <jats:tex-math>{k\\geq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximum degree of piecewise polynomials used in discrete space, and <jats:italic>N</jats:italic> is the number of mesh elements. The results are valid for the three types of layer-adapted meshes: Shishkin-type, Bakhvalov–Shishkin-type, and Bakhvalov-type. Numerical experiments are conducted to test the theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Discontinuous Galerkin Method for a Third-Order Singularly Perturbed Problem of Convection-Diffusion Type\",\"authors\":\"Li Yan, Zhoufeng Wang, Yao Cheng\",\"doi\":\"10.1515/cmam-2022-0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local discontinuous Galerkin (LDG) method is studied for a third-order singularly perturbed problem of convection-diffusion type. Based on a regularity assumption for the exact solution, we prove almost <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>O</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi>N</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2022-0176_eq_0280.png\\\" /> <jats:tex-math>{O(N^{-(k+\\\\frac{1}{2})})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (up to a logarithmic factor) energy-norm convergence uniformly in the perturbation parameter. Here, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2022-0176_eq_0414.png\\\" /> <jats:tex-math>{k\\\\geq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximum degree of piecewise polynomials used in discrete space, and <jats:italic>N</jats:italic> is the number of mesh elements. The results are valid for the three types of layer-adapted meshes: Shishkin-type, Bakhvalov–Shishkin-type, and Bakhvalov-type. Numerical experiments are conducted to test the theoretical results.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0176\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0176","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类三阶对流扩散型奇异摄动问题的局部不连续伽辽金方法。基于精确解的正则性假设,我们证明了几乎O(N -(k+ 1 2)) {O(N^{-(k+ \frac{1}{2}))}(直到一个对数因子)能量范数在扰动参数上一致收敛。其中,k≥0 }k{\geq 0为}离散空间中使用分段多项式的最大程度,N为网格单元个数。结果适用于三种类型的层适应网格:shishkin型、bakhvalov - shishkin型和bakhvalov型。数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Discontinuous Galerkin Method for a Third-Order Singularly Perturbed Problem of Convection-Diffusion Type
The local discontinuous Galerkin (LDG) method is studied for a third-order singularly perturbed problem of convection-diffusion type. Based on a regularity assumption for the exact solution, we prove almost O ( N - ( k + 1 2 ) ) {O(N^{-(k+\frac{1}{2})})} (up to a logarithmic factor) energy-norm convergence uniformly in the perturbation parameter. Here, k 0 {k\geq 0} is the maximum degree of piecewise polynomials used in discrete space, and N is the number of mesh elements. The results are valid for the three types of layer-adapted meshes: Shishkin-type, Bakhvalov–Shishkin-type, and Bakhvalov-type. Numerical experiments are conducted to test the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信