基于对角化技术的Stokes问题弱Galerkin有限元后验误差估计

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Jiachuan Zhang, Ran Zhang, Jingzhi Li
{"title":"基于对角化技术的Stokes问题弱Galerkin有限元后验误差估计","authors":"Jiachuan Zhang, Ran Zhang, Jingzhi Li","doi":"10.1515/cmam-2022-0087","DOIUrl":null,"url":null,"abstract":"Abstract Based on a hierarchical basis a posteriori error estimator, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the Stokes problem in two and three dimensions. In this paper, we propose two novel diagonalization techniques for velocity and pressure, respectively. Using diagonalization techniques, we need only to solve two diagonal linear algebraic systems corresponding to the degree of freedom to get the error estimator. The upper bound and lower bound of the error estimator are also shown to address the reliability of the adaptive method. Numerical simulations are provided to demonstrate the effectiveness and robustness of our algorithm.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"783 - 811"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Estimator for Weak Galerkin Finite Element Method for Stokes Problem Using Diagonalization Techniques\",\"authors\":\"Jiachuan Zhang, Ran Zhang, Jingzhi Li\",\"doi\":\"10.1515/cmam-2022-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on a hierarchical basis a posteriori error estimator, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the Stokes problem in two and three dimensions. In this paper, we propose two novel diagonalization techniques for velocity and pressure, respectively. Using diagonalization techniques, we need only to solve two diagonal linear algebraic systems corresponding to the degree of freedom to get the error estimator. The upper bound and lower bound of the error estimator are also shown to address the reliability of the adaptive method. Numerical simulations are provided to demonstrate the effectiveness and robustness of our algorithm.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"23 1\",\"pages\":\"783 - 811\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0087\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于层次基后验误差估计器,提出了一种求解二维和三维Stokes问题的自适应弱Galerkin有限元方法。在本文中,我们分别提出了两种新的速度和压力对角化技术。利用对角化技术,我们只需要求解两个与自由度相对应的对角线性代数系统,就可以得到误差估计器。误差估计器的上界和下界也被示出,以解决自适应方法的可靠性问题。通过数值模拟验证了算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posteriori Error Estimator for Weak Galerkin Finite Element Method for Stokes Problem Using Diagonalization Techniques
Abstract Based on a hierarchical basis a posteriori error estimator, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the Stokes problem in two and three dimensions. In this paper, we propose two novel diagonalization techniques for velocity and pressure, respectively. Using diagonalization techniques, we need only to solve two diagonal linear algebraic systems corresponding to the degree of freedom to get the error estimator. The upper bound and lower bound of the error estimator are also shown to address the reliability of the adaptive method. Numerical simulations are provided to demonstrate the effectiveness and robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信