边界集中网格上具有不规则Dirichlet边界数据的偏微分方程的有限元逼近

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
J. Pfefferer, M. Winkler
{"title":"边界集中网格上具有不规则Dirichlet边界数据的偏微分方程的有限元逼近","authors":"J. Pfefferer, M. Winkler","doi":"10.1515/cmam-2022-0129","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with finite element error estimates for second order elliptic PDEs with inhomogeneous Dirichlet boundary data in convex polygonal domains. The Dirichlet boundary data are assumed to be irregular such that the solution of the PDE does not belong to H 2 ⁢ ( Ω ) {H^{2}(\\Omega)} but only to H r ⁢ ( Ω ) {H^{r}(\\Omega)} for some r ∈ ( 1 , 2 ) {r\\in(1,2)} . As a consequence, a discretization of the PDE with linear finite elements exhibits a reduced convergence rate in L 2 ⁢ ( Ω ) {L^{2}(\\Omega)} and H 1 ⁢ ( Ω ) {H^{1}(\\Omega)} . In order to restore the best possible convergence rate we propose and analyze in detail the usage of boundary concentrated meshes. These meshes are gradually refined towards the whole boundary. The corresponding grading parameter does not only depend on the regularity of the Dirichlet boundary data and their discrete implementation but also on the norm, which is used to measure the error. In numerical experiments we confirm our theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Approximations for PDEs with Irregular Dirichlet Boundary Data on Boundary Concentrated Meshes\",\"authors\":\"J. Pfefferer, M. Winkler\",\"doi\":\"10.1515/cmam-2022-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with finite element error estimates for second order elliptic PDEs with inhomogeneous Dirichlet boundary data in convex polygonal domains. The Dirichlet boundary data are assumed to be irregular such that the solution of the PDE does not belong to H 2 ⁢ ( Ω ) {H^{2}(\\\\Omega)} but only to H r ⁢ ( Ω ) {H^{r}(\\\\Omega)} for some r ∈ ( 1 , 2 ) {r\\\\in(1,2)} . As a consequence, a discretization of the PDE with linear finite elements exhibits a reduced convergence rate in L 2 ⁢ ( Ω ) {L^{2}(\\\\Omega)} and H 1 ⁢ ( Ω ) {H^{1}(\\\\Omega)} . In order to restore the best possible convergence rate we propose and analyze in detail the usage of boundary concentrated meshes. These meshes are gradually refined towards the whole boundary. The corresponding grading parameter does not only depend on the regularity of the Dirichlet boundary data and their discrete implementation but also on the norm, which is used to measure the error. In numerical experiments we confirm our theoretical results.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0129\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0129","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究凸多边形域中具有非齐次Dirichlet边界数据的二阶椭圆偏微分方程的有限元误差估计。假设Dirichlet边界数据是不规则的,使得PDE的解不属于H2(Ω){H^{2}(\Omega)},而只属于某些r∈(1,2){r(1,2)}的HR(Ω)}{H^{r}(\ Omega)}。因此,具有线性有限元的PDE的离散化在L2(Ω){L^{2}(\Omega)}和H1(Ω){H^{1}(\Omega)}中表现出降低的收敛速度。为了恢复最佳的收敛速度,我们提出并详细分析了边界集中网格的使用。这些网格会朝着整个边界逐渐细化。相应的分级参数不仅取决于狄利克雷边界数据的正则性及其离散实现,还取决于用于测量误差的范数。在数值实验中,我们证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Approximations for PDEs with Irregular Dirichlet Boundary Data on Boundary Concentrated Meshes
Abstract This paper is concerned with finite element error estimates for second order elliptic PDEs with inhomogeneous Dirichlet boundary data in convex polygonal domains. The Dirichlet boundary data are assumed to be irregular such that the solution of the PDE does not belong to H 2 ⁢ ( Ω ) {H^{2}(\Omega)} but only to H r ⁢ ( Ω ) {H^{r}(\Omega)} for some r ∈ ( 1 , 2 ) {r\in(1,2)} . As a consequence, a discretization of the PDE with linear finite elements exhibits a reduced convergence rate in L 2 ⁢ ( Ω ) {L^{2}(\Omega)} and H 1 ⁢ ( Ω ) {H^{1}(\Omega)} . In order to restore the best possible convergence rate we propose and analyze in detail the usage of boundary concentrated meshes. These meshes are gradually refined towards the whole boundary. The corresponding grading parameter does not only depend on the regularity of the Dirichlet boundary data and their discrete implementation but also on the norm, which is used to measure the error. In numerical experiments we confirm our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信