局部与非局部方程耦合的一种区域分解格式

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Gabriel Acosta, Francisco M. Bersetche, Julio D. Rossi
{"title":"局部与非局部方程耦合的一种区域分解格式","authors":"Gabriel Acosta, Francisco M. Bersetche, Julio D. Rossi","doi":"10.1515/cmam-2022-0140","DOIUrl":null,"url":null,"abstract":"Abstract We study a natural alternating method of Schwarz type (domain decomposition) for a certain class of couplings between local and nonlocal operators. We show that our method fits into Lions’s framework and prove, as a consequence, convergence in both the continuous and the discrete settings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Domain Decomposition Scheme for Couplings between Local and Nonlocal Equations\",\"authors\":\"Gabriel Acosta, Francisco M. Bersetche, Julio D. Rossi\",\"doi\":\"10.1515/cmam-2022-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a natural alternating method of Schwarz type (domain decomposition) for a certain class of couplings between local and nonlocal operators. We show that our method fits into Lions’s framework and prove, as a consequence, convergence in both the continuous and the discrete settings.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0140\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0140","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了一类局部算子与非局部算子耦合的Schwarz型自然交替方法(域分解)。我们证明了我们的方法符合Lions的框架,并证明了在连续和离散设置下的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Domain Decomposition Scheme for Couplings between Local and Nonlocal Equations
Abstract We study a natural alternating method of Schwarz type (domain decomposition) for a certain class of couplings between local and nonlocal operators. We show that our method fits into Lions’s framework and prove, as a consequence, convergence in both the continuous and the discrete settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信